Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity.
Date
2016-08
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag(+) was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag(+) in deionized water. Rather than correlating with Ag(+), Fundulus embryo toxicity was better explained (R(2) = 0.96) by total dissolved Ag (Ag(+), AgCl2 (-), AgCl3 (2-), AgCl4 (3-)). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag(+) concentrations (R(2) = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na(+) dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Matson, Cole W, Audrey J Bone, Mélanie Auffan, T Ty Lindberg, Mariah C Arnold, Heileen Hsu-Kim, Mark R Wiesner, Richard T Di Giulio, et al. (2016). Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity. Ecotoxicology, 25(6). pp. 1105–1118. 10.1007/s10646-016-1665-3 Retrieved from https://hdl.handle.net/10161/12415.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Heileen Hsu-Kim
Professor Heileen (Helen) Hsu-Kim is an environmental engineer who specializes in environmental aquatic chemistry and geochemistry. Her research tackles problems related to pollutant metals and the biogeochemical processes that alter their distribution in water, soil, and air. The applications of this work include environmental remediation technologies, the impacts of energy production on water resources, global environmental health, and the environmental implications and applications of nanotechnology.
Dr. Hsu-Kim's current research projects are focused on mercury biogeochemistry, the impacts of coal ash disposal on water quality, recovering valuable materials from geological wastes, and health impacts of trace metal/metalloid exposures. A central theme to her work is the utilization of chemical speciation for understanding and predicting the persistence, mobility and bioavailability of metals and minerals in the aquatic environment.
The methodologies her group employs for this research include laboratory techniques for quantifying trace element speciation, functional measures of reactivity and bioavailability of contaminant metals, and techniques to probe interactions at mineral, water and microbial interfaces.
Mark Wiesner
Wiesner's research interests include membrane processes, nanostructured materials, transport and fate of nanomaterials in the environment, nano plastics, colloidal and interfacial processes, and environmental systems analysis.
Richard T. Di Giulio
Dr. Di Giulio's research is concerned with basic studies of mechanisms of contaminant metabolism, adaptation and toxicity, and with the development of mechanistically-based indices of exposure and toxicity that can be employed in biomonitoring. The long term goals of this research are to bridge the gap between mechanistic toxicological research and the development of useful tools for environmental assessment, and to elucidate linkages between human and ecosystem health. The bulk of Dr. Di Giulio's work employs a comparative approach with aquatic animals, particularly fishes, as models. Of particular concern are mechanisms of oxidative metabolism of aromatic hydrocarbons, mechanisms of free radical production and antioxidant defense, and mechanisms of chemical carcinogenesis, developmental perturbations and adaptations to contaminated environments by fishes.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.