Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity.

Abstract

The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag(+) was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag(+) in deionized water. Rather than correlating with Ag(+), Fundulus embryo toxicity was better explained (R(2) = 0.96) by total dissolved Ag (Ag(+), AgCl2 (-), AgCl3 (2-), AgCl4 (3-)). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag(+) concentrations (R(2) = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na(+) dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s10646-016-1665-3

Publication Info

Matson, Cole W, Audrey J Bone, Mélanie Auffan, T Ty Lindberg, Mariah C Arnold, Heileen Hsu-Kim, Mark R Wiesner, Richard T Di Giulio, et al. (2016). Silver toxicity across salinity gradients: the role of dissolved silver chloride species (AgCl x ) in Atlantic killifish (Fundulus heteroclitus) and medaka (Oryzias latipes) early life-stage toxicity. Ecotoxicology, 25(6). pp. 1105–1118. 10.1007/s10646-016-1665-3 Retrieved from https://hdl.handle.net/10161/12415.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Hsu-Kim

Heileen Hsu-Kim

Professor in the Department of Civil and Environmental Engineering

Professor Heileen (Helen) Hsu-Kim is an environmental engineer who specializes in environmental aquatic chemistry and geochemistry. Her research tackles problems related to pollutant metals and the biogeochemical processes that alter their distribution in water, soil, and air. The applications of this work include environmental remediation technologies, the impacts of energy production on water resources, global environmental health, and the environmental implications and applications of nanotechnology.

Dr. Hsu-Kim's current research projects are focused on mercury biogeochemistry, the impacts of coal ash disposal on water quality, recovering valuable materials from geological wastes, and health impacts of trace metal/metalloid exposures. A central theme to her work is the utilization of chemical speciation for understanding and predicting the persistence, mobility and bioavailability of metals and minerals in the aquatic environment.

The methodologies her group employs for this research include laboratory techniques for quantifying trace element speciation, functional measures of reactivity and bioavailability of contaminant metals, and techniques to probe interactions at mineral, water and microbial interfaces.

Wiesner

Mark Wiesner

James B. Duke Distinguished Professor of Civil and Environmental Engineering

Wiesner's research interests include membrane processes, nanostructured materials, transport and fate of nanomaterials in the environment, nano plastics, colloidal and interfacial processes, and environmental systems analysis.

Di Giulio

Richard T. Di Giulio

Research Professor of Environmental Toxicology in the Division of Environmental Science and Policy

Dr. Di Giulio serves as Director of Duke University's Integrated Toxicology Program and the Superfund Basic Research Center.

Dr. Di Giulio's research is concerned with basic studies of mechanisms of contaminant metabolism, adaptation and toxicity, and with the development of mechanistically-based indices of exposure and toxicity that can be employed in biomonitoring. The long term goals of this research are to bridge the gap between mechanistic toxicological research and the development of useful tools for environmental assessment, and to elucidate linkages between human and ecosystem health. The bulk of Dr. Di Giulio's work employs a comparative approach with aquatic animals, particularly fishes, as models. Of particular concern are mechanisms of oxidative metabolism of aromatic hydrocarbons, mechanisms of free radical production and antioxidant defense, and mechanisms of chemical carcinogenesis, developmental perturbations and adaptations to contaminated environments by fishes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.