Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns.

Loading...
Thumbnail Image

Date

2012-05

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

58
views
17
downloads

Citation Stats

Abstract

Backbone relationships within the large eupolypod II clade, which includes nearly a third of extant fern species, have resisted elucidation by both molecular and morphological data. Earlier studies suggest that much of the phylogenetic intractability of this group is due to three factors: (i) a long root that reduces apparent levels of support in the ingroup; (ii) long ingroup branches subtended by a series of very short backbone internodes (the "ancient rapid radiation" model); and (iii) significantly heterogeneous lineage-specific rates of substitution. To resolve the eupolypod II phylogeny, with a particular emphasis on the backbone internodes, we assembled a data set of five plastid loci (atpA, atpB, matK, rbcL, and trnG-R) from a sample of 81 accessions selected to capture the deepest divergences in the clade. We then evaluated our phylogenetic hypothesis against potential confounding factors, including those induced by rooting, ancient rapid radiation, rate heterogeneity, and the Bayesian star-tree paradox artifact. While the strong support we inferred for the backbone relationships proved robust to these potential problems, their investigation revealed unexpected model-mediated impacts of outgroup composition, divergent effects of methods for countering the star-tree paradox artifact, and gave no support to concerns about the applicability of the unrooted model to data sets with heterogeneous lineage-specific rates of substitution. This study is among few to investigate these factors with empirical data, and the first to compare the performance of the two primary methods for overcoming the Bayesian star-tree paradox artifact. Among the significant phylogenetic results is the near-complete support along the eupolypod II backbone, the demonstrated paraphyly of Woodsiaceae as currently circumscribed, and the well-supported placement of the enigmatic genera Homalosorus, Diplaziopsis, and Woodsia.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/sysbio/sys001

Publication Info

Rothfels, Carl J, Anders Larsson, Li-Yaung Kuo, Petra Korall, Wen-Liang Chiou and Kathleen M Pryer (2012). Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. Systematic biology, 61(3). pp. 490–509. 10.1093/sysbio/sys001 Retrieved from https://hdl.handle.net/10161/21788.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Pryer

Kathleen M. Pryer

Professor of Biology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.