Aggregate complexes of HIV-1 induced by multimeric antibodies.

Abstract

BACKGROUND: Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. RESULTS: The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. CONCLUSIONS: These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1186/s12977-014-0078-8

Publication Info

Stieh, Daniel J, Deborah F King, Katja Klein, Pinghuang Liu, Xiaoying Shen, Kwan Ki Hwang, Guido Ferrari, David C Montefiori, et al. (2014). Aggregate complexes of HIV-1 induced by multimeric antibodies. Retrovirology, 11. p. 78. 10.1186/s12977-014-0078-8 Retrieved from https://hdl.handle.net/10161/14673.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Shen

Xiaoying Shen

Associate Professor in Surgery

Dr. Shen is an Associate Director and Deputy of the Laboratory for HIV and COVID-19 Vaccine Research & Development in the Department of Surgery, Division of Surgical Sciences at Duke University Medical Center. Her research interest focuses on the humoral immune response following virus infection or vaccination. During the past decade, she has worked intensively on the specificity and breadth of binding antibody responses against HIV.

Dr. Shen’s team developed assays and analytical tools for a peptide microarray assay for finely mapping of HIV-1 cross-subtype linear epitopes targeted by antibody responses in human specimens as well as animal models, and adopted a multiplex binding antibody assay for evaluating binding antibody responses. With these technologies, her team evaluated various clinical HIV-1 vaccine studies and NHP studies. Building upon the data generated by her team and other collaborators, Dr. Shen works with bioinformatics and biostatistics personnel on deciphering immune correlates in both human clinical trials and nonhuman primate studies. During the COVID-19 pandemic, her team expanded their research to SARS-COV-2 antibody responses.

In 2021, Dr. Shen became the Deputy Director of the Laboratory for HIV and COVID-19 Vaccine Research & Development, alongside Laboratory Director Dr. Montefiori.  The laboratory established a lentivirus-based pseudovirus SARS-CoV-2 neutralization assay that has been FDA-approved. The laboratory is assessing neutralizing antibody responses for multiple phase 3 COVID-19 vaccine trials. In addition to supporting clinical trials, the lab has a strong focus on characterizing SARS-CoV-2 variants for their neutralizing susceptibility and potential to escape from vaccine-elicited immune responses.

Meanwhile, Dr. Shen’s team remains highly active in HIV-1 vaccine research, evaluating neutralizing responses in preclinical and clinical HIV vaccine trials as a core laboratory for multiple networks including the HIV Vaccine Trials Network (HVTN), the Collaboration for AIDS Vaccine Discovery (CAVD) funded by Bill & Melinda Gates Foundation, as well as the NIH Nonhuman Primate Core Humoral Immunology Laboratory for AIDS Vaccine which Dr. Shen directs.

Denny

Thomas Norton Denny

Professor in Medicine

Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI), Associate Dean for Duke Research and Discovery @RTP, and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. Previously, he served on the Health Sector Advisory Council of the Duke University Fuquay School of Business. Prior to joining Duke, he was an Associate Professor of Pathology, Laboratory Medicine and Pediatrics, Associate Professor of Preventive Medicine and Community Health and Assistant Dean for Research in Health Policy at the New Jersey Medical School, Newark, New Jersey. He has served on numerous committees for the NIH over the last two decades and currently is the principal investigator of an NIH portfolio in excess of 65 million dollars. Mr. Denny was a 2002-2003 Robert Wood Johnson Foundation Health Policy Fellow at the Institute of Medicine of the National Academies (IOM). As a fellow, he served on the US Senate Health, Education, Labor and Pensions Committee with legislation/policy responsibilities in global AIDS, bioterrorism, clinical trials/human subject protection and vaccine related-issues.

As the Chief Operating Officer of the DHVI, Mr. Denny has senior oversight of the DHVI research portfolio and the units/teams that support the DHVI mission. He has extensive international experience and previously was a consultant to the U.S. Centers for Disease Control and Prevention (CDC) for the President’s Emergency Plan for AIDS Relief (PEPFAR) project to oversee the development of an HIV and Public Health Center of Excellence laboratory network in Guyana. In September 2004, the IOM appointed him as a consultant to their Board on Global Health Committee studying the options for overseas placement of U.S. health professionals and the development of an assessment plan for activities related to the 2003 PEPFAR legislative act. In the 1980s, Mr. Denny helped establish a small laboratory in the Republic of Kalmykia (former Soviet Union) to improve the care of children with HIV/AIDS and served as a Board Member of the Children of Chernobyl Relief Fund Foundation. In 2005, Mr. Denny was named a consulting medical/scientific officer to the WHO Global AIDS Program in Geneva. He has also served as program reviewers for the governments of the Netherlands and South Africa as well as an advisor to several U.S. biotech companies. He currently serves as the Chair of the Scientific Advisory Board for Grid Biosciences.

Mr. Denny has authored and co-authored more than 200 peer-reviewed papers and serves on the editorial board of Communications in Cytometry and Journal of Clinical Virology. He holds an M.Sc in Molecular and Biomedical Immunology from the University of East London and a degree in Medical Law (M.Phil) from the Institute of Law and Ethics in Medicine, School of Law, University of Glasgow. In 1991, he completed a course of study in Strategic Management at The Wharton School, University of Pennsylvania. In 1993, he completed the Program for Advanced Training in Biomedical Research Management at Harvard School of Public Health. In December 2005, he was inducted as a Fellow into the College of Physicians of Philadelphia, the oldest medical society in the US.

While living in New Jersey, Mr. Denny was active in his community, gaining additional experience from two publicly elected positions. In 2000, Mr. Denny was selected by the New Jersey League of Municipalities to Chair the New Jersey Community Mental Health Citizens’ Advisory Board and Mental Health Planning Council as a gubernatorial appointment.

Tomaras

Georgia Doris Tomaras

A. Geller Distinguished Professor for Research in Immunology

Dr. Georgia Tomaras is a tenured Professor of Surgery, Professor of Immunology, Professor of Molecular Genetics and Microbiology and is a Fellow of the American Academy of Microbiology (AAM) and a Fellow of the American Association for the Advancement of Science (AAAS).  Dr. Tomaras is Co-Director of the Center for Human Systems Immunology (CHSI) Duke University and Director of the Duke Center for AIDS Research (CFAR). Her national and international leadership roles include: Executive Management Team (EMT) leader and mPI for the HIV Vaccine Trials Network (HVTN); Director of Lab Sciences (HVTN); and Chair of NIH Vaccine Research Center (VRC) Board of Scientific Counselors. Her prior leadership roles include serving as the Director of Research, Duke Human Vaccine Institute (DHVI); Director of the DHVI Training Program; Associate Director of DHVI Research; Co-Director of the Interdisciplinary Research Training Program in AIDS (IRTPA) Duke; Chair of the National Institutes of Health (NIH) AIDS Vaccine Research Subcommittee (AVRS), and Advisory Counsel member of the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID). Dr. Tomaras’ primary research focus is deciphering mechanisms of protective human immunity and identification of immune correlates of protection to further development of effective vaccines against infectious diseases.  

 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.