Liposome division by a simple bacterial division machinery.
Date
2013-07
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We previously reconstituted Z rings in tubular multilamellar liposomes with FtsZ-YFP-mts, where mts is a membrane-targeting amphiphilic helix. These reconstituted Z rings generated a constriction force but did not divide the thick-walled liposomes. Here we developed a unique system to observe Z rings in unilamellar liposomes. FtsZ-YFP-mts incorporated inside large, unilamellar liposomes formed patches that produced concave distortions when viewed at the equator of the liposome. When viewed en face at the top of the liposome, many of the patches were seen to be small Z rings, which still maintained the concave depressions. We also succeeded in reconstituting the more natural, two-protein system, with FtsA and FtsZ-YFP (having the FtsA-binding peptide instead of the mts). Unilamellar liposomes incorporating FtsA and FtsZ-YFP showed a variety of distributions, including foci and linear arrays. A small fraction of liposomes had obvious Z rings. These Z rings could constrict the liposomes and in some cases appeared to complete the division, leaving a clear septum between the two daughter liposomes. Because complete liposome divisions were not seen with FtsZ-mts, FtsA may be critical for the final membrane scission event. We demonstrate that reconstituted cell division machinery apparently divides the liposome in vitro.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Osawa, Masaki, and Harold P Erickson (2013). Liposome division by a simple bacterial division machinery. Proceedings of the National Academy of Sciences of the United States of America, 110(27). 10.1073/pnas.1222254110 Retrieved from https://hdl.handle.net/10161/16454.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Harold Paul Erickson
Recent research has been on cytoskeleton (eukaryotes and bacteria); a skirmish to debunk the irisin story; a reinterpretation of proposed multivalent binders of the coronavirus spike protein. I have also published an ebook on "Principles of Protein-Protein Association" suitable for a course module or individual learning.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.