Liposome division by a simple bacterial division machinery.

Loading...
Thumbnail Image

Date

2013-07

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

107
views
69
downloads

Citation Stats

Attention Stats

Abstract

We previously reconstituted Z rings in tubular multilamellar liposomes with FtsZ-YFP-mts, where mts is a membrane-targeting amphiphilic helix. These reconstituted Z rings generated a constriction force but did not divide the thick-walled liposomes. Here we developed a unique system to observe Z rings in unilamellar liposomes. FtsZ-YFP-mts incorporated inside large, unilamellar liposomes formed patches that produced concave distortions when viewed at the equator of the liposome. When viewed en face at the top of the liposome, many of the patches were seen to be small Z rings, which still maintained the concave depressions. We also succeeded in reconstituting the more natural, two-protein system, with FtsA and FtsZ-YFP (having the FtsA-binding peptide instead of the mts). Unilamellar liposomes incorporating FtsA and FtsZ-YFP showed a variety of distributions, including foci and linear arrays. A small fraction of liposomes had obvious Z rings. These Z rings could constrict the liposomes and in some cases appeared to complete the division, leaving a clear septum between the two daughter liposomes. Because complete liposome divisions were not seen with FtsZ-mts, FtsA may be critical for the final membrane scission event. We demonstrate that reconstituted cell division machinery apparently divides the liposome in vitro.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1073/pnas.1222254110

Publication Info

Osawa, Masaki, and Harold P Erickson (2013). Liposome division by a simple bacterial division machinery. Proceedings of the National Academy of Sciences of the United States of America, 110(27). 10.1073/pnas.1222254110 Retrieved from https://hdl.handle.net/10161/16454.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.