In Vivo and in Vitro Synthesis of Phosphatidylglycerol by an Escherichia coli Cardiolipin Synthase.

Loading...
Thumbnail Image

Date

2016-11-25

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

139
views
215
downloads

Citation Stats

Abstract

Phosphatidylglycerol (PG) makes up 5-20% of the phospholipids of Escherichia coli and is essential for growth in wild-type cells. PG is synthesized from the dephosphorylation of its immediate precursor, phosphatidylglycerol phosphate (PGP) whose synthase in E. coli is PgsA. Using genetic, biochemical, and highly sensitive mass spectrometric approaches, we identified an alternative mechanism for PG synthesis in E. coli that is PgsA independent. The reaction of synthesis involves the conversion of phosphatidylethanolamine and glycerol into PG and is catalyzed by ClsB, a phospholipase D-type cardiolipin synthase. This enzymatic reaction is demonstrated herein both in vivo and in vitro as well as by using the purified ClsB protein. When the growth medium was supplemented with glycerol, the expression of E. coli ClsB significantly increased PG and cardiolipin levels, with the growth deficiency of pgsA null strain also being complemented under such conditions. Identification of this alternative mechanism for PG synthesis not only expands our knowledge of bacterial anionic phospholipid biosynthesis, but also sheds light on the biochemical functions of the cls gene redundancy in E. coli and other bacteria. Finally, the PGP-independent PG synthesis in E. coli may also have important implications for the understanding of PG biosynthesis in eukaryotes that remains incomplete.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1074/jbc.M116.762070

Publication Info

Li, Chijun, Brandon K Tan, Jinshi Zhao and Ziqiang Guan (2016). In Vivo and in Vitro Synthesis of Phosphatidylglycerol by an Escherichia coli Cardiolipin Synthase. J Biol Chem, 291(48). pp. 25144–25153. 10.1074/jbc.M116.762070 Retrieved from https://hdl.handle.net/10161/13029.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Guan

Ziqiang Guan

Research Professor in Biochemistry

We develop and apply mass spectrometry techniques to address biochemical and biomedical questions that are lipid-related. Research projects include:

1) Structural lipidomics

o   Develop and apply high resolution tandem mass spectrometry-based lipidomics for the discovery, structural elucidation and functional study of novel lipids.

2) Elucidation of novel pathways/enzymes of lipid biosynthesis and metabolism

o   Genetic, biochemical and MS approaches are employed to identify the substrates and pathways involved in lipid biosynthesis and metabolism

3) Identification of lipid biomarkers of genetic diseases and cancers

o    Provide molecular insights into the disease mechanisms, as well as to serve as the diagnostic and prognostic tools of diseases.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.