Utility of intraoperative neurophysiological monitoring in detecting motor and sensory nerve injuries in pediatric high-grade spondylolisthesis.

Abstract

Background context

Intraoperative neuromonitoring (IONM) during surgical correction of spinal deformity has been shown to reduce iatrogenic injury in pediatric and adult populations. Although motor-evoked potentials (MEP), somatosensory-evoked potentials (SSEP), and electromyography (EMG) have been shown to be highly sensitive and specific in detecting spinal cord and nerve root injuries, their utility in detecting motor and sensory nerve root injury in pediatric high-grade spondylolisthesis (HGS) remains unknown.

Purpose

We aim to assess the diagnostic accuracy and therapeutic impact of unimodal and multimodal IONM in the surgical management of HGS.

Study design/setting

Retrospective cohort study.

Patient sample

Pediatric patients undergoing posterior spinal fusion (PSF) for treatment of HGS.

Outcome measures

Data on patient demographics, spinopelvic and spondylolisthesis parameters, and the presence of pre-and postoperative neurological deficits were collected.

Methods

Intraoperative MEP, SSEP, and EMG alerts were recorded. Alert criteria were defined as a change in amplitude of more than 50% for MEP and/or SSEP, with or without change in latency, and more than 10 seconds of sustained EMG activity. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated for each modality and the combination of MEP and SSEP. The 95% confidence intervals (CIs) were calculated using the exact (Clopper-Pearson) method.

Results

Fifty-four pediatric patients with HGS undergoing PSF between 2003 and 2021 in a single tertiary center were included. Seventy-two percent (39/54) of patients were female; the average age of patients was 13.7±2.3 years. The sensitivity of MEP in detecting new postoperative neurologic deficit was 92.3% (95% CI [64.0-99.8]), SSEP 77.8% (95% CI [40.0-97.2]), EMG 69.2% (95% CI [38.6-90.9]), and combination MEP and SSEP 100% (95% CI [73.5-100]). The specificity of MEP was 80.0% (95% CI [64.4-91.0]), SSEP 95.1% (95% CI [83.5-99.4]), EMG 65.9% (95% CI [49.4-79.9]), and combination MEP and SSEP 82.9% (95% CI [67.9-92.9]). The accuracy of SSEP was 92.0% (95% CI [80.8%-97.8%]), and the combination of MEP and SSEP was 86.8% (95% CI [74.7%-94.5%]). Twelve (22.2%) patients had a new motor or sensory deficit diagnosed immediately postoperatively. Nine patients made a full recovery, and 3 had some neurologic deficit on final follow-up.

Conclusion

Unimodal IONM using SSEP and MEP alone were accurate in diagnosing sensory and motor nerve root injuries, respectively. The diagnostic accuracy in predicting motor and sensory nerve injuries in pediatric HGS improved further with the use of multimodal IONM (combining MEP and SEP). We recommend the utilization of multimodal IONM in all HGS PSF surgeries.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.spinee.2023.08.002

Publication Info

Iorio, Carlo, Robert Koucheki, Samuel Strantzas, Michael Vandenberk, Stephen J Lewis, Reinhard Zeller, Mark Camp, Brett Rocos, et al. (2023). Utility of intraoperative neurophysiological monitoring in detecting motor and sensory nerve injuries in pediatric high-grade spondylolisthesis. The spine journal : official journal of the North American Spine Society, 23(12). pp. 1920–1927. 10.1016/j.spinee.2023.08.002 Retrieved from https://hdl.handle.net/10161/29680.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Rocos

Brett Rocos

Assistant Professor of Orthopaedic Surgery

I joined the team at Duke University Health from London, UK, where I was a Consultant Adult and Paediatric Spine Surgeon at Barts Health NHS Trust and Honorary Consultant Senior Lecturer at Queen Mary University of London. I completed my surgical training in in the South West of the UK and at the University of Toronto, and am fellowship trained in adult spine surgery, paediatric spine surgery, orthopaedic trauma surgery, research and healthcare management.

I am driven to support patients at every stage of their care, from clinic assessment, through surgery to discharge. Making sure that every person, adult, child, family or friend understands what’s wrong, helping them to choose the right treatment for them, and what the recovery will be like is an important priority.

My research activity focusses on finding effective new treatments for spinal disorders and bringing them to patients. Focusing on spinal deformity, I have led investigations in the UK, Canada and the USA, and I sit on the Global AO Knowledge Forum for Deformity and the Research Grants Committee at the Scoliosis Research Society. I have lectured in North America and Europe about the treatment of spine disorders for the Scoliosis Research Society, Global Spine Congress, AO Spine and Eurospine, and I have worked hard to produce research that improves the care for spine patients wherever they live. Lastly, I review for several orthopaedic journals and I am Deputy Editor of the Bone and Joint 360, a leading publication with a global readership.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.