Gardner Phenomenology in Minimally Polydisperse Crystalline Systems


We study the structure and dynamics of crystals of minimally polydisperse hard spheres at high pressures. Structurally, they exhibit a power-law scaling in their probability distribution of weak forces and small interparticle gaps as well as a flat density of vibrational states. Dynamically, they display anomalous aging beyond a characteristic pressure. Although essentially crystalline, these solids thus display features reminiscent of the Gardner phase observed in certain amorphous solids. Because preparing these materials is fast and facile, they are ideal for testing a theory of amorphous materials. They are also amenable to experimental realizations in commercially-available particulate systems.







Patrick Charbonneau

Professor of Chemistry

Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.