A wirelessly controlled implantable LED system for deep brain optogenetic stimulation.
Date
2015
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
In recent years optogenetics has rapidly become an essential technique in neuroscience. Its temporal and spatial specificity, combined with efficacy in manipulating neuronal activity, are especially useful in studying the behavior of awake behaving animals. Conventional optogenetics, however, requires the use of lasers and optic fibers, which can place considerable restrictions on behavior. Here we combined a wirelessly controlled interface and small implantable light-emitting diode (LED) that allows flexible and precise placement of light source to illuminate any brain area. We tested this wireless LED system in vivo, in transgenic mice expressing channelrhodopsin-2 in striatonigral neurons expressing D1-like dopamine receptors. In all mice tested, we were able to elicit movements reliably. The frequency of twitches induced by high power stimulation is proportional to the frequency of stimulation. At lower power, contraversive turning was observed. Moreover, the implanted LED remains effective over 50 days after surgery, demonstrating the long-term stability of the light source. Our results show that the wireless LED system can be used to manipulate neural activity chronically in behaving mice without impeding natural movements.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Rossi, Mark A, Vinson Go, Tracy Murphy, Quanhai Fu, James Morizio and Henry H Yin (2015). A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front Integr Neurosci, 9. p. 8. 10.3389/fnint.2015.00008 Retrieved from https://hdl.handle.net/10161/13450.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

James Morizio
Over the last three decades Dr. Morizio's research has been focused on exploring new analog CMOS microelectronics and systems for cross discipline research areas. One objective of his research is to provide disruptive sensor interface technology in niche applications areas to significantly improve system performance and capabilities beyond their current level of technology integration. These current research areas include wireless neural interface systems for closed loop in vivo electrophysiology instrumentation and highly efficient broadband transducer drivers for scalable ultrasonic microfluidic interfaces.
Dr. Morizio also has 35 years experience at Duke University teaching analog and digital VLSI circuit design courses and is the co-inventor of 8 issued patents.

Henry Yin
I am interested in understanding the neural mechanisms underlying goal-directed actions. For the first time in history, advances in psychology and neurobiology have made it feasible to pursue the detailed neural mechanisms underlying goal-directed and voluntary actions--how they are driven by the needs and desires of the organism and controlled by cognitive processes that provide a rich representation of the self and the world. My approach to this problem is highly integrative, combining behavioral analysis with electrophysiological techniques as well as tools from molecular biology. In the near future three techniques will be emphasized. 1) Dissecting reward-guided behavior using analytical behavioral assays. 2) In vivo recording from cerebral cortex, thalamus, midbrain, and basal ganglia in awake behaving rodents. Up to hundreds of neurons can be recorded from multiple brain areas that form a functional neural network in a single animal. 3) In vitro (and ex vivo) whole-cell patch-clamp recording in brain slices, with the aid of genetic tools for visualization of distinct neuronal populations. Ultimately, I hope to characterize goal-directed actions at multiple levels of analysis--from molecules to neural networks. This knowledge will provide us with insight into various pathological conditions characterized by impaired goal-directed behaviors, such as drug addiction, obsessive-compulsive disorder, Parkinson's disease, and Huntington's disease.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.