A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent.

Abstract

Diffuse intrinsic pontine gliomas (DIPGs) represent a particularly lethal type of pediatric brain cancer with no effective therapeutic options. Our laboratory has previously reported the development of genetically engineered DIPG mouse models using the RCAS/tv-a system, including a model driven by PDGF-B, H3.3K27M, and p53 loss. These models can serve as a platform in which to test novel therapeutics prior to the initiation of human clinical trials. In this study, an in vitro high-throughput drug screen as part of the DIPG preclinical consortium using cell-lines derived from our DIPG models identified BMS-754807 as a drug of interest in DIPG. BMS-754807 is a potent and reversible small molecule multi-kinase inhibitor with many targets including IGF-1R, IR, MET, TRKA, TRKB, AURKA, AURKB. In vitro evaluation showed significant cytotoxic effects with an IC50 of 0.13 μM, significant inhibition of proliferation at a concentration of 1.5 μM, as well as inhibition of AKT activation. Interestingly, IGF-1R signaling was absent in serum-free cultures from the PDGF-B; H3.3K27M; p53 deficient model suggesting that the antitumor activity of BMS-754807 in this model is independent of IGF-1R. In vivo, systemic administration of BMS-754807 to DIPG-bearing mice did not prolong survival. Pharmacokinetic analysis demonstrated that tumor tissue drug concentrations of BMS-754807 were well below the identified IC50, suggesting that inadequate drug delivery may limit in vivo efficacy. In summary, an unbiased in vitro drug screen identified BMS-754807 as a potential therapeutic agent in DIPG, but BMS-754807 treatment in vivo by systemic delivery did not significantly prolong survival of DIPG-bearing mice.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0118926

Publication Info

Halvorson, Kyle G, Kelly L Barton, Kristin Schroeder, Katherine L Misuraca, Christine Hoeman, Alex Chung, Donna M Crabtree, Francisco J Cordero, et al. (2015). A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent. PLoS One, 10(3). p. e0118926. 10.1371/journal.pone.0118926 Retrieved from https://hdl.handle.net/10161/12567.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.