High sensitivity dedicated dual-breast PET/MR imaging: concept and preliminary simulations

Abstract

This paper presents a new high-sensitivity PET geometry for high fidelity MRI-compatible PET breast imaging which can scan both breasts simultaneously and have: high sensitivity and resolution; compatibility with MR-breast imaged volume; complete visualization of both breasts, mediastinum and axilla; and a modular design. Whereas contemporary dedicated x-ray and molecular breast imaging devices only scan one breast at a time, this approach relies on an unconventional PET geometry, and is able to provide a PET field of view (FOV) larger than that from dedicated breast MRI. The system geometry is evaluated with GATE Monte Carlo simulations of intrinsic system parameters. Various sized lesions (4-6mm) having [6:1 to 4:1] lesion:background radioactivity ratios mimicking different biological uptake are simulated, strategically located throughout a volumetric anthropomorphic torso. Dedicated breast PET (dbPET) imaging is compared with contemporary clinical PET. The dbPET system sensitivity is >6X greater than for contemporary whole-body PET. The novel, non-conventional system geometry allows for simultaneous dual-breast imaging, along with full medial and axillary imaging. Iteratively reconstructed full-volumetric images illustrate sharper visualization of 4mm lower uptake [4:1] lesions throughout the FOV compared with clinical PET. Image overlap between dedicated breast PET and MRI FOVs is excellent. Simulation results indicate clear superiority over conventional, high-sensitivity whole-body PET systems, as well as improved sensitivity over single-breast dbPET systems. This proposed system potentially facilitates both early detection and diagnosis, especially by increasing specificity of MRI, as well as visualizing tissue heterogeneity, monitoring therapeutic efficacy, and detecting breast cancer recurrence throughout the entire mediastinum.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1117/12.2563650

Publication Info

Tornai, Martin, Suranjana Samanta, Stanislaw Majewski, Mark Williams, Timothy Turkington, Alan Register, Jianyong Jiang, Sergei Dolinsky, et al. (2020). High sensitivity dedicated dual-breast PET/MR imaging: concept and preliminary simulations. Proceedings of SPIE, 11513(1151318). pp. 1151318-1–1151318-6. 10.1117/12.2563650 Retrieved from https://hdl.handle.net/10161/21538.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Tornai

Martin Paul Tornai

Adjunct Associate Professor in the Department of Radiology

The major research focus of my laboratory concerns high resolution and sensitivity molecular imaging of normalcy and/or disease in the breast using dedicated molecular 3D imaging techniques. Particular attention is paid to improved patient comfort such that no breast compression is necessary, which then dictates novel physics and engineering approaches to obtaining the highest quality data. The term "molecular imaging" means determining the spatial distribution of biological materials based on their molecular characteristics. Two examples include: the in vivo detection and spatial localization of tracer quantities of discretely emitted nuclear radiation which can be used to quantitatively measure aspects of the biological system (e.g. reaction kinetics, hyper/hypo-metabolism, etc.), and the in vivo spatial localization of objects based on their intrinsic physical properties, e.g. differentiation of skin, fat and connective tissue based on differences in their intrinsic electron densities.

Two classes of devices have been developed, are in refinement and are undergoing patient studies: (1) a dedicated, fully 3D, volumetric imaging Single Photon Emission Computed Tomograph (SPECT) device which produces functional molecular images with high resolution and sensitivity; and (2) a dedicated, fully 3D, volumetric x-ray CT device which incorporates a novel quasi-monochromatic x-ray source allowing more optimal imaging with lower radiation doses which produces molecular anatomical images. Along with geometric calibration objects, small animals and cadaveric breast tissue samples have been scanned, yielding high resolution and high quality in vivo images. Patient imaging has successfully begun on these novel developed systems. We have integrated a flexible patient bed to help comfortably position patients in each systems' field of view. Further, the individual systems have been integrated to form a hybrid SPECT/CT mammotomograph providing inherently coregistered, fully 3D, complementary molecular/anatomical information for the same patient and in a common field of view. These technologies could be used for diagnostic purposes, monitoring therapy and/or treatment planning, screening difficult or otherwise inconclusive breasts or scanning women at high risk for breast cancer. Due to the very low x-ray radiation doses possible to obtain the 3D images, the CT system could potentially be used to screen the population at large.

Turkington

Timothy Garvey Turkington

Associate Professor in Radiology

My work focuses on PET imaging physics, including instrumentation, reconstruction, and image processing.  We're working toward more quantitatively accurate PET,  reduction in scan times and radiation dose in PET/CT, novel imaging devices for PET (and SPECT), and application of PET to more clinical and research needs.  Positron Emission Tomography is now in widespread use as a clinical tool for oncology, neurology, and cardiology, and continues to be used as a research tool in these areas. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.