In vivo small animal micro-CT using nanoparticle contrast agents.

Loading...

Date

2015

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

238
views
312
downloads

Citation Stats

Attention Stats

Abstract

Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.

Department

Description

Provenance

Subjects

contrast agents, micro-CT, nanoparticles, small animal imaging, spectral imaging

Citation

Published Version (Please cite this version)

10.3389/fphar.2015.00256

Publication Info

Ashton, Jeffrey R, Jennifer L West and Cristian T Badea (2015). In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol, 6. p. 256. 10.3389/fphar.2015.00256 Retrieved from https://hdl.handle.net/10161/10945.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Badea

Cristian Tudorel Badea

Professor in Radiology
  • Our QIAL lab advances quantitative imaging by designing novel CT systems, reconstruction algorithms, image analysis and applications, with a core strength in preclinical CT.
  • Current efforts center on spectral CT (dual-energy and photon-counting) with nanoparticle contrast agents for theranostics, multidimensional CT for challenging applications such as intracranial aneurysm, cardiac, and perfusion imaging, and modern reconstruction and image processing ( including deep learning).
  • In parallel, we lead co-clinical cancer imaging work; I served as PI of the U24 Duke Preclinical Research Resources for Quantitative Imaging Biomarkers within the NCI Co-Clinical Imaging Research Program (CIRP).
  • We are also building a virtual preclinical photon-counting CT platform for cancer studies to accelerate method development and translation.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.