Epigenetics of Hypertensive Nephropathy.

Loading...
Thumbnail Image

Date

2024-11

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

0
views
7
downloads

Citation Stats

Abstract

Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease. Next, we discuss the underlying pathophysiology of HN and highlight current in vitro and in vivo models used to study the condition. Finally, we compare various types of HN-induced renal injury and their associated epigenetic mechanisms with those observed in other kidney injury models, drawing inferences on potential epigenetic therapies for HN. The information gathered in this work indicate that epigenetic mechanisms can drive the progression of HN by regulating key molecular signaling pathways involved in renal damage and fibrosis. The limitations of Renin-Angiotensin-Aldosterone System (RAAS) inhibitors underscore the need for alternative treatments targeting epigenetic pathways. This review emphasizes the importance of further research into the epigenetic regulation of HN to develop more effective therapies and preventive strategies. Identifying novel epigenetic markers could provide new therapeutic opportunities for managing CKD and reducing the burden of ESRD.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.3390/biomedicines12112622

Publication Info

Zhang, Yize, Hamidreza Arzaghi, Zhehan Ma, Yasmin Roye and Samira Musah (2024). Epigenetics of Hypertensive Nephropathy. Biomedicines, 12(11). p. 2622. 10.3390/biomedicines12112622 Retrieved from https://hdl.handle.net/10161/31818.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Musah

Samira Musah

Assistant Professor in the Department of Biomedical Engineering

The Musah Lab is interested in understanding how molecular signals and biophysical forces can function either synergistically or independently to guide organ development and physiology, and how these processes can be therapeutically harnessed to treat human disease. Given the escalating medical crisis in nephrology as growing number of patients suffer from kidney disease that can lead to organ failure, the Musah Lab focuses on engineering stem cell fate for applications in human kidney disease, extra-renal complications, and therapeutic development. Dr. Musah’s research interests include stem cell biology and regenerative medicine, molecular and cellular basis of human organ development and disease progression, organ engineering, patient-specific disease models, biomarker identification, therapeutic discovery, tissue and organ transplantation, microphysiological systems including Organ Chips (organs-on-chips) and organoids, matrix biology, mechanotransduction and disease biophysics.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.