Global biogeochemical cycle of vanadium.
Date
2017-12-11
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Attention Stats
Abstract
Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Schlesinger, William H, Emily M Klein and Avner Vengosh (2017). Global biogeochemical cycle of vanadium. Proc Natl Acad Sci U S A. 10.1073/pnas.1715500114 Retrieved from https://hdl.handle.net/10161/15929.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.