Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1.

Loading...
Thumbnail Image

Date

1999-01-25

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

229
views
291
downloads

Abstract

Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.

Department

Description

Provenance

Citation

Scholars@Duke

Kornbluth

Sally A. Kornbluth

Jo Rae Wright University Distinguished Professor Emerita

Our lab studies the regulation of complex cellular processes, including cell cycle progression and programmed cell death (apoptosis). These tightly orchestrated processes are critical for appropriate cell proliferation and cell death, and when they go awry can result in cancer and degenerative disorders. Within these larger fields, we have focused on understanding the cellular mechanisms that prevent the onset of mitosis prior to the completion of DNA replication, the processes that prevent cell division when the mitotic spindle is disrupted, the signaling pathways that prevent apoptotic cell death in cancer cells and the mechanisms that link cell metabolism to cell death and survival.

In our quest to answer these important cell biological and biochemical questions, we are varied in our use of experimental systems.   Traditionally, we have used cell-free extracts prepared from eggs of the frog Xenopus laevis which can recapitulate cell cycle events and apoptotic processes in vitro. For the study of cell cycle events, extracts are prepared which can undergo multiple rounds of DNA replication and mitosis in vitro. Progression through the cell cycle can be monitored by microscopic observation of nuclear morphology and by biochemically assaying the activity of serine/threonine kinases which control cell cycle transitions.

For the study of apoptosis, modifications in extract preparation have allowed us to produce extracts which can apoptotically fragment nuclei and can accurately reproduce the biochemical events of apoptosis, including internucleosomal DNA cleavage and activation of apoptotic proteases, the caspases.

More recently, we have focused on studying apoptosis and cell cycle progression in mammalian models, both tissue culture cells and mouse models of cancer.  In these studies, we are trying to determine the precise signaling mechanisms used by cancer cells to accelerate proliferation and evade apoptotic cell death mechanisms.   We also endeavor to subvert these mechanisms to therapeutic advantage.   We are particularly interested in links between metabolism and cell death, as high metabolic rates in cancer cells appear to suppress apoptosis to evade chemotherapy-induced cell death.

Finally, we also have several projects using the facile genetics of Drosophila melanogaster to further understand links between metabolism and cell death and also the ways in which mitochondrial dynamics are linked to apoptotic pathways.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.