Development of a modified frailty index for adult spinal deformities independent of functional changes following surgical correction: a true baseline risk assessment tool.

Abstract

Purpose

To develop a simplified, modified frailty index for adult spinal deformity (ASD) patients dependent on objective clinical factors.

Methods

ASD patients with baseline (BL) and 2-year (2Y) follow-up were included. Factors with the largest R2 value derived from multivariate forward stepwise regression were including in the modified ASD-FI (clin-ASD-FI). Factors included in the clin-ASD-FI were regressed against mortality, extended length of hospital stay (LOS, > 8 days), revisions, major complications and weights for the clin-ASD-FI were calculated via Beta/Sullivan. Total clin-ASD-FI score was created with a score from 0 to 1. Linear regression correlated clin-ASD-FI with ASD-FI scores and published cutoffs for the ASD-FI were used to create the new frailty cutoffs: not frail (NF: < 0.11), frail (F: 0.11-0.21) and severely frail (SF: > 0.21). Binary logistic regression assessed odds of complication or reop for frail patients.

Results

Five hundred thirty-one ASD patients (59.5 yrs, 79.5% F) were included. The final model had a R2 of 0.681, and significant factors were: < 18.5 or > 30 BMI (weight: 0.0625 out of 1), cardiac disease (0.125), disability employment status (0.3125), diabetes mellitus (0.0625), hypertension (0.0625), osteoporosis (0.125), blood clot (0.1875), and bowel incontinence (0.0625). These factors calculated the score from 0 to 1, with a mean cohort score of 0.13 ± 0.14. Breakdown by clin-ASD-FI score: 51.8% NF, 28.1% F, 20.2% SF. Increasing frailty severity was associated with longer LOS (NF: 7.0, F: 8.3, SF: 9.2 days; P < 0.001). Frailty independently predicted occurrence of any complication (OR: 9.357 [2.20-39.76], P = 0.002) and reop (OR: 2.79 [0.662-11.72], P = 0.162).

Conclusions

Utilizing an existing ASD frailty index, we proposed a modified version eliminating the patient-reported components. This index is a true assessment of physiologic status, and represents a superior risk factor assessment compared to other tools for both primary and revision spinal deformity surgery as a result of its immutability with surgery, lack of subjectivity, and ease of use.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s43390-023-00808-5

Publication Info

Passias, Peter G, Katherine E Pierce, Jamshaid M Mir, Oscar Krol, Renaud Lafage, Virginie Lafage, Breton Line, Juan S Uribe, et al. (2024). Development of a modified frailty index for adult spinal deformities independent of functional changes following surgical correction: a true baseline risk assessment tool. Spine deformity. 10.1007/s43390-023-00808-5 Retrieved from https://hdl.handle.net/10161/30196.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Passias

Peter Passias

Instructor in the Department of Orthopaedic Surgery

Throughout my medical career, I have remained dedicated to improving my patients' quality of life. As a specialist in adult cervical and spinal deformity surgery, I understand the significant impact our interventions have on individuals suffering from debilitating pain and physical and mental health challenges. Spinal deformity surgery merges the complexities of spinal biomechanics with the needs of an aging population. My research focuses on spinal alignment, biomechanics, innovative surgical techniques, and health economics to ensure value-based care that enhances patient outcomes.

Shaffrey

Christopher Ignatius Shaffrey

Professor of Orthopaedic Surgery

I have more than 25 years of experience treating patients of all ages with spinal disorders. I have had an interest in the management of spinal disorders since starting my medical education. I performed residencies in both orthopaedic surgery and neurosurgery to gain a comprehensive understanding of the entire range of spinal disorders. My goal has been to find innovative ways to manage the range of spinal conditions, straightforward to complex. I have a focus on managing patients with complex spinal disorders. My patient evaluation and management philosophy is to provide engaged, compassionate care that focuses on providing the simplest and least aggressive treatment option for a particular condition. In many cases, non-operative treatment options exist to improve a patient’s symptoms. I have been actively engaged in clinical research to find the best ways to manage spinal disorders in order to achieve better results with fewer complications.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.