Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.

Abstract

Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1(ys/ys)). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1(ys/ys) mice at a dose of 5 × 10(11) vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1(ys/ys) mice.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1089/hum.2016.099

Publication Info

Yi, Haiqing, Quan Zhang, Elizabeth D Brooks, Chunyu Yang, Beth L Thurberg, Priya S Kishnani and Baodong Sun (2017). Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy. Hum Gene Ther, 28(3). pp. 286–294. 10.1089/hum.2016.099 Retrieved from https://hdl.handle.net/10161/15078.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sun

Baodong Sun

Associate Professor in Pediatrics

My overall research interests are finding effective treatment for human glycogen storage diseases (GSDs) and other inherited metabolic disorders. My current research focuses on identification of novel therapeutic targets and development of effective therapies for GSD II (Pompe disease), GSD III (Cori disease), and GSD IV (Andersen disease) using cellular and animal disease models. The main therapeutic approaches we are using in our pre-clinical studies include protein/enzyme therapy, AAV-mediated gene therapy, and substrate reduction therapy with small molecule drugs.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.