Prognostic Modeling of Parkinson's Disease Progression Using Early Longitudinal Patterns of Change.
dc.contributor.author | Ren, Xuehan | |
dc.contributor.author | Lin, Jeffrey | |
dc.contributor.author | Stebbins, Glenn T | |
dc.contributor.author | Goetz, Christopher G | |
dc.contributor.author | Luo, Sheng | |
dc.date.accessioned | 2021-09-01T13:23:55Z | |
dc.date.available | 2021-09-01T13:23:55Z | |
dc.date.issued | 2021-07-30 | |
dc.date.updated | 2021-09-01T13:23:55Z | |
dc.description.abstract | BackgroundPredicting Parkinson's disease (PD) progression may enable better adaptive and targeted treatment planning.ObjectiveDevelop a prognostic model using multiple, easily acquired longitudinal measures to predict temporal clinical progression from Hoehn and Yahr (H&Y) stage 1 or 2 to stage 3 in early PD.MethodsPredictive longitudinal measures of PD progression were identified by the joint modeling method. Measures were extracted by multivariate functional principal component analysis methods and used as covariates in Cox proportional hazards models. The optimal model was developed from the Parkinson's Progression Marker Initiative (PPMI) data set and confirmed with external validation from the Longitudinal and Biomarker Study in PD (LABS-PD) study.ResultsThe proposed prognostic model with longitudinal information of selected clinical measures showed significant advantages in predicting PD temporal progression in comparison to a model with only baseline information (iAUC = 0.812 vs. 0.743). The modeling results allowed the development of a prognostic index for categorizing PD patients into low, mid, and high risk of progression to HY 3 that is offered to facilitate physician-patient discussion on prognosis.ConclusionIncorporating longitudinal information of multiple clinical measures significantly enhances predictive performance of prognostic models. Furthermore, the proposed prognostic index enables clinicians to classify patients into different risk groups, which could be adaptively updated as new longitudinal information becomes available. Modeling of this type allows clinicians to utilize observational data sets that inform on disease natural history and specifically, for precision medicine, allows the insertion of a patient's clinical data to calculate prognostic estimates at the individual case level. © 2021 International Parkinson and Movement Disorder Society. | |
dc.identifier.issn | 0885-3185 | |
dc.identifier.issn | 1531-8257 | |
dc.identifier.uri | ||
dc.language | eng | |
dc.publisher | Wiley | |
dc.relation.ispartof | Movement disorders : official journal of the Movement Disorder Society | |
dc.relation.isversionof | 10.1002/mds.28730 | |
dc.subject | PPMI | |
dc.subject | functional data analysis | |
dc.subject | joint modeling | |
dc.subject | personalized medicine | |
dc.subject | prediction | |
dc.title | Prognostic Modeling of Parkinson's Disease Progression Using Early Longitudinal Patterns of Change. | |
dc.type | Journal article | |
duke.contributor.orcid | Luo, Sheng|0000-0003-4214-5809 | |
pubs.organisational-group | School of Medicine | |
pubs.organisational-group | Duke Clinical Research Institute | |
pubs.organisational-group | Biostatistics & Bioinformatics | |
pubs.organisational-group | Duke | |
pubs.organisational-group | Institutes and Centers | |
pubs.organisational-group | Basic Science Departments | |
pubs.publication-status | Published |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2021Ren_Lin_Stebbins_Goetz_Luo2021MDS.pdf
- Size:
- 431.48 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version