Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts.
Abstract
Many of the biochemical reactions of apoptotic cell death, including mitochondrial cytochrome c release and caspase activation, can be reconstituted in cell-free extracts derived from Xenopus eggs. In addition, because caspase activation does not occur until the egg extract has been incubated for several hours on the bench, upstream signaling processes occurring before full apoptosis are rendered accessible to biochemical manipulation. We reported previously that the adaptor protein Crk is required for apoptotic signaling in egg extracts (Evans, E.K., W. Lu, S.L. Strum, B.J. Mayer, and S. Kornbluth. 1997. EMBO (Eur. Mol. Biol. Organ.) J. 16:230-241). Moreover, we demonstrated that removal of Crk Src homology (SH)2 or SH3 interactors from the extracts prevented apoptosis. We now report the finding that the relevant Crk SH2-interacting protein, important for apoptotic signaling in the extract, is the well-known cell cycle regulator, Wee1. We have demonstrated a specific interaction between tyrosine-phosphorylated Wee1 and the Crk SH2 domain and have shown that recombinant Wee1 can restore apoptosis to an extract depleted of SH2 interactors. Moreover, exogenous Wee1 accelerated apoptosis in egg extracts, and this acceleration was largely dependent on the presence of endogenous Crk protein. As other Cdk inhibitors, such as roscovitine and Myt1, did not act like Wee1 to accelerate apoptosis, we propose that Wee1-Crk complexes signal in a novel apoptotic pathway, which may be unrelated to Wee1's role as a cell cycle regulator.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Collections
Scholars@Duke

Sally A. Kornbluth
Our lab studies the regulation of complex cellular processes, including cell cycle progression and programmed cell death (apoptosis). These tightly orchestrated processes are critical for appropriate cell proliferation and cell death, and when they go awry can result in cancer and degenerative disorders. Within these larger fields, we have focused on understanding the cellular mechanisms that prevent the onset of mitosis prior to the completion of DNA replication, the processes that prevent cell division when the mitotic spindle is disrupted, the signaling pathways that prevent apoptotic cell death in cancer cells and the mechanisms that link cell metabolism to cell death and survival.
In our quest to answer these important cell biological and biochemical questions, we are varied in our use of experimental systems. Traditionally, we have used cell-free extracts prepared from eggs of the frog Xenopus laevis which can recapitulate cell cycle events and apoptotic processes in vitro. For the study of cell cycle events, extracts are prepared which can undergo multiple rounds of DNA replication and mitosis in vitro. Progression through the cell cycle can be monitored by microscopic observation of nuclear morphology and by biochemically assaying the activity of serine/threonine kinases which control cell cycle transitions.
For the study of apoptosis, modifications in extract preparation have allowed us to produce extracts which can apoptotically fragment nuclei and can accurately reproduce the biochemical events of apoptosis, including internucleosomal DNA cleavage and activation of apoptotic proteases, the caspases.
More recently, we have focused on studying apoptosis and cell cycle progression in mammalian models, both tissue culture cells and mouse models of cancer. In these studies, we are trying to determine the precise signaling mechanisms used by cancer cells to accelerate proliferation and evade apoptotic cell death mechanisms. We also endeavor to subvert these mechanisms to therapeutic advantage. We are particularly interested in links between metabolism and cell death, as high metabolic rates in cancer cells appear to suppress apoptosis to evade chemotherapy-induced cell death.
Finally, we also have several projects using the facile genetics of Drosophila melanogaster to further understand links between metabolism and cell death and also the ways in which mitochondrial dynamics are linked to apoptotic pathways.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.