Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats



The gold-standard method for estimation of patient-specific organ doses in digital tomosynthesis (DT) requires protocol-specific Monte Carlo (MC) simulations of radiation transport in anatomically accurate computational phantoms. Although accurate, MC simulations are computationally expensive, leading to a turnaround time in the order of core hours for simulating a single exam. This limits their clinical utility. The purpose of this study is to overcome this limitation by utilizing patient- and protocol-specific MC simulations to develop a comprehensive database of air-kerma-normalized organ dose coefficients for a virtual population of adult and pediatric patient models over an expanded set of exam protocols in DT for retrospective and prospective estimation of radiation dose in clinical tomosynthesis.

Materials and methods

A clinically representative virtual population of 14 patient models was used, with pediatric models (M and F) at ages 1, 5, 10, and 15 and adult patient models (M and F) with BMIs at 10th , 50th , and 90th percentiles of the US population. A GPU-based MC simulation framework was used to simulate organ doses in the patient models, incorporating the scanner-specific configuration of a clinical DT system (VolumeRad, GE Healthcare, Waukesha, WI) and an expanded set of exam protocols including 21 distinct acquisition techniques for imaging a variety of anatomical regions (head and neck, thorax, spine, abdomen, and knee). Organ dose coefficients (hn ) were estimated by normalizing organ dose estimates to air kerma at 70 cm (X70cm ) from the source in the scout view. The corresponding coefficients for projection radiography were approximated using organ doses estimated for the scout view. The organ dose coefficients were further used to compute air-kerma-normalized patient-specific effective dose coefficients (Kn ) for all combinations of patients and protocols, and a comparative analysis examining the variation of radiation burden across sex, age, and exam protocols in DT, and with projection radiography was performed.


The database of organ dose coefficients (hn ) containing 294 distinct combinations of patients and exam protocols was developed and made publicly available. The values of Kn were observed to produce estimates of effective dose in agreement with prior studies and consistent with magnitudes expected for pediatric and adult patients across the different exam protocols, with head and neck regions exhibiting relatively lower and thorax and C-spine (apsc, apcs) regions relatively higher magnitudes. The ratios (r = Kn /Kn,rad ) quantifying the differences air-kerma-normalized patient-specific effective doses between DT and projection radiography were centered around 1.0 for all exam protocols, with the exception of protocols covering the knee region (pawk, patk).


This study developed a database of organ dose coefficients for a virtual population of 14 adult and pediatric XCAT patient models over a set of 21 exam protocols in DT. Using empirical measurements of air kerma in the clinic, these organ dose coefficients enable practical retrospective and prospective patient-specific radiation dosimetry. The computation of air-kerma-normalized patient-specific effective doses further enable the comparison of radiation burden to the patient populations between protocols and between imaging modalities (e.g., DT and projection radiography), as presented in this study. This article is protected by copyright. All rights reserved.





Published Version (Please cite this version)


Publication Info

Sharma, Shobhit, Anuj Kapadia, Francesco Ria, W Paul Segars and Ehsan Samei (2022). Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols. Medical physics. 10.1002/mp.15798 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Francesco Ria

Assistant Professor of Radiology

Dr. Francesco Ria is a medical physicist and he serves as an Assistant Professor in the Department of Radiology. Francesco has an extensive expertise in the assessment of procedure performances in radiology. In particular, his research activities focus on the simultaneous evaluation of radiation dose and image quality in vivo in computed tomography providing a comprehensive evaluation of radiological exams. Moreover, Francesco is developing and investigating novel mathematical models that, uniquely in the radiology field, can incorporate a comprehensive and quantitative risk-to-benefit assessment of the procedures; he is continuing to apply his expertise towards the definition of new patient specific risk metrics, and in the assessment of image quality in vivo also using state-of-the-art imaging technology, such as photon counting computed tomography scanners, and machine learning reconstruction algorithms.

Dr. Ria is a member of the American Association of Physicists in Medicine task group 392 (Investigation and Quality Control of Automatic Exposure Control System in CT), of the American Association of Physicists in Medicine Public Education working group (WGATE), and of the Italian Association of Medical Physics task group Dose Monitoring in Diagnostic Imaging.


William Paul Segars

Professor in Radiology

Our current research involves the use of computer-generated phantoms and simulation techniques to investigate and optimize medical imaging systems and methods. Medical imaging simulation involves virtual experiments carried out entirely on the computer using computational models for the patients as well as the imaging devices. Simulation is a powerful tool for characterizing, evaluating, and optimizing medical imaging systems. A vital aspect of simulation is to have realistic models of the subject's anatomy as well as accurate models for the physics of the imaging process. Without this, the results of the simulation may not be indicative of what would occur in actual clinical studies and would, therefore, have limited practical value. We are leading the development of realistic simulation tools for use toward human and small animal imaging research.

These tools have a wide variety of applications in many different imaging modalities to investigate the effects of anatomical, physiological, physical, and instrumentational factors on medical imaging and to research new image acquisition strategies, image processing and reconstruction methods, and image visualization and interpretation techniques. We are currently applying them to the field of x-ray CT. The motivation for this work is the lack of sufficiently rigorous methods for optimizing the image quality and radiation dose in x-ray CT to the clinical needs of a given procedure. The danger of unnecessary radiation exposure from CT applications, especially for pediatrics, is just now being addressed. Optimization is essential in order for new and emerging CT applications to be truly useful and not represent a danger to the patient. Given the relatively high radiation doses required of current CT systems, thorough optimization is unlikely to ever be done in live patients. It would be prohibitively expensive to fabricate physical phantoms to simulate a realistic range of patient sizes and clinical needs especially when physiologic motion needs to be considered. The only practical approach to the optimization problem is through the use of realistic computer simulation tools developed in our work.


Ehsan Samei

Reed and Martha Rice Distinguished Professor of Radiology

Dr. Ehsan Samei, PhD, DABR, FAAPM, FSPIE, FAIMBE, FIOMP, FACR is a Persian-American medical physicist. He is the Reed and Martha Rice Distinguished Professor of Radiology, and Professor of Medical Physics, Biomedical Engineering, Physics, and Electrical and Computer Engineering at Duke University. He serves as the Chief Imaging Physicist for Duke University Health System, the Director of the Carl E Ravin Advanced Imaging Laboratories and the Center for Virtual Imaging Trials (CVIT), and co-PI of one the five Centers of Excellence in Regulatory Science and Innovation (CERSI), Triangle CERSI. He is certified by the American Board of Radiology, recognized as a Distinguished Investigator by the Academy of Radiology Research, and awarded Fellow by five professional organization. He founded/co-founded the Duke Medical Physics Program, the Duke Imaging Physics Residency Program, the Duke Clinical Imaging Physics Group, the Center for Virtual Imaging Trials, and the Society of Directors of Academic Medical Physics Programs (SDAMPP). He has held senior leadership positions in the AAPM, SPIE, SDAMPP, and RSNA, including election to the presidency of the SEAAPM (2010-2011), SDAMPP (2011), and AAPM (2023).

Dr. Samei’s scientific expertise include x-ray imaging, theoretical imaging models, simulation methods, and experimental techniques in medical image formation, quantification, and perception.  His research aims to bridge the gap between scientific scholarship and clinical practice, in the meaningful realization of translational research, and in clinical processes that are informed by scientific evidence. He has advanced image quality and safety metrics and radiometrics that are clinically relevant and that can be used to design, optimize, and monitor interpretive and quantitative performance of imaging techniques. These have been implemented in advanced imaging performance characterization, procedural optimization, and clinical dose and quality analytics. His most recent research interests have been virtual clinical trial across a broad spectrum of oncologic, pulmonary, cardiac, and vascular diseases, and developing methodological advances that provide smart fusions of principle-informed and AI-based, data-informed approaches to scientific inquiry.

Dr. Samei has mentored over 140 trainees (graduate and postgraduate). He has >1400 scientific publications including >360 referred journal articles, ~600 conference presentations, and 4 books. Citations to his work is reflected in an h-index of 74 and a Weighted Relative Citation Ratio of 613. His laboratory of over 20 researchers has been supported continuously over two decades by 44 extramural grants, culminating in a NIH Program Project grant in 2021 to establish the national Center for Virtual Imaging Trials (CVIT), joining a small number of prominent Biomedical Technology Research Centers across the nation. In 2023, he, along with 3 other PIs, was awarded to lead one of five national Centers of Excellence in Regulatory Science and Innovation (Triangle CERSI) by the FDA.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.