Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling.


INTRODUCTION:Cultured primary human trophoblasts (PHT), derived from term placentas, are relatively resistant to infection by diverse viruses. The resistance can be conferred to non-trophoblastic cells by pre-exposing them to medium that was conditioned by PHT cells. This antiviral effect is mediated, at least in part, by microRNAs (miRNA) expressed from the chromosome 19 microRNA cluster (C19MC). Recently we showed that PHT cells and cells pre-exposed to PHT medium are also resistant to infection by Zika virus (ZIKV), an effect mediated by the constitutive release of the type III interferons (IFN) IFN lambda-1 and IFN lambda-2 in trophoblastic medium. We hypothesized that trophoblastic C19MC miRNA are active against ZIKV, and assessed the interaction of this pathway with IFN lambda-1 - mediated resistance. METHODS:Term PHT cells were cultured using standard techniques. An osteosarcoma cell line (U2OS) was used as non-trophoblastic cells, which were infected with either ZIKV or vesicular stomatitis virus (VSV). Trophoblastic extracellular vesicles (EVs) were produced by gradient ultracentrifugation. RT-qPCR was used to determine viral infection, cellular or medium miRNA levels and the expression of interferon-stimulated genes. RESULTS:We showed that C19MC miRNA attenuate infection of U2OS cells by ZIKV, and that C19MC miRNA or exosomes that contain C19MC miRNA did not influence the type III IFN pathway. Similarly, cell exposure to recombinant IFN lambda-1 had no effect on miRNA expression, and these pathways did not exhibit synergistic interaction. DISCUSSION:PHT cells exert antiviral activity by at least two independent mechanisms, mediated by C19MC miRNA and by type III IFNs.





Published Version (Please cite this version)


Publication Info

Bayer, Avraham, Nicholas J Lennemann, Yingshi Ouyang, Elena Sadovsky, Megan A Sheridan, R Michael Roberts, Carolyn B Coyne, Yoel Sadovsky, et al. (2018). Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. Placenta, 61. pp. 33–38. 10.1016/j.placenta.2017.11.004 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Carolyn Coyne

George Barth Geller Distinguished Professor of Immunology

We study the pathways by which microorganisms cross cellular barriers and the mechanisms by which these barriers restrict microbial infections. Our studies primarily focus on the epithelium that lines the gastrointestinal tract and on placental trophoblasts, the cells that comprise a key cellular barrier of the human placenta. Our work is highly multidisciplinary and encompasses aspects of cell biology, immunology, and microbiology. Our long-term goals are to identify pathogen- and host-specific therapeutic targets to prevent or treat microbial infections and ultimately to alleviate the morbidity and mortality caused by these infections.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.