Different lines of rats selectively-bred for high alcohol-drinking demonstrate disparate preferences for nicotine self-administration

Loading...
Thumbnail Image

Date

2016-01-01

Authors

Rezvani, AH
Levin, ED
Wells, C
Slade, S
Morrison, M
Marshall, L
Morris, M
Confino, J
Allenby, C
Lumeng, L

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

196
views
254
downloads

Citation Stats

Abstract

© 2016 Amir H. Rezvani et al.Background. Alcohol and nicotine are commonly coabused. The search for a common core of neural, behavioral, and genetic factors underlying addiction has been the goal of addiction research. Purpose. Genetic predisposition to high alcohol intake has been studied in rats by selectively breeding rats that have high preference for alcohol. The current experiments were conducted to determine if the level of intravenous nicotine administration for the various lines of alcohol-preferring rats differs from that for nonalcohol-preferring controls. Study design. Adult alcohol-naïve selectively-bred alcohol-preferring male rats from four lines (P, AA, HAD-1, sP) and their control nonalcohol-preferring rats (NP, ANA, LAD-1, sNP) were trained and given access to self-administer nicotine (0.03mg/kg/infusion). Results. The results show that the P rats selfadministered significantly more nicotine than NP rats. In contrast, there were no significant differences in nicotine self-administration between the sP and sNP or the AA and ANA rats. Unexpectedly, high alcohol-drinking HAD-1 rats self-administered significantly less nicotine than low alcohol-drinking LAD-1 rats. Conclusion. This suggests that some genetic factors that underlie high-alcohol intake have more general effects in promoting high nicotine intake tendencies, while other genetic factors are more specific to only heavy drinking.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.4303/jdar/235972

Publication Info

Rezvani, AH, ED Levin, C Wells, S Slade, M Morrison, L Marshall, M Morris, J Confino, et al. (2016). Different lines of rats selectively-bred for high alcohol-drinking demonstrate disparate preferences for nicotine self-administration. Journal of Drug and Alcohol Research, 2016(5). 10.4303/jdar/235972 Retrieved from https://hdl.handle.net/10161/13071.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Rezvani

Amir H. Rezvani

Professor Emeritus in Psychiatry and Behavioral Sciences

My research and teaching interests have been primarily focused on the following areas:

Alcoholism: I work with "alcoholic" rats with genetic predisposition!" We use selectively-bred alcohol preferring rats as an animal model of human alcoholism for developing better pharmacological treatments for alcoholism. Recently, we are working on several novel promising "anti-craving" compounds for the treatment of alcoholism. We are also studying the interaction between alcohol drinking and nicotine intake.

Nicotine Addiction: We have been studying age and sex differences in i.v. nicotine self-administration in rats. We have found that pattern of drug intake is both age- and sex-dependent. Our lab is also exploring different neuronal targets for developing better pharmacologic treatment for nicotine addiction.

Sustained Attention: Another aspect of our research is studying the role of the neuronal nicotinic and other neuronal systems in sustained attention using a rodent model. We have shown, nicotine (not smoking!) and nicotinic compounds improve attention in rats. A majority of people with schizophrenia smoke and they smoke heavily. Thus, it is important to understand the interaction of antipsychotic medications and nicotine in sustained attention. This has been another aspect of our research with interesting results. Presently, we are testing novel nicotinic compounds for improving pharmacologically-impaired sustained attention.

Teaching: I love to teach and interact with students. Since arriving at Duke in 1999, I have been team-teaching the popular alcohol course (Psych 206-01R; Alcohol: Brain, Society and Individual). I also enjoy mentoring undergrad students who are interested in science and enjoy working in the lab with cute little creatures!.

Community: I am a member of the Board of Directors of Triangle Residential Options for Substance Abusers (TROSA), a self-supported therapeutic community in Durham. I also give seminars and workshops on addiction around the country.

Levin

Edward Daniel Levin

Professor in Psychiatry and Behavioral Sciences

Dr. Levin is Chief of the Neurobehavioral Research Lab in the Psychiatry Department of Duke University Medical Center. His primary academic appointment is as Professor in the Department of Psychiatry and Behavioral Sciences. He also has secondary appointments in the Department Pharmacology and Cancer Biology, the Department of Psychological and Brain Sciences and the Nicholas School of the Environment at Duke. His primary research effort is to understand basic neural interactions underlying cognitive function and addiction and to apply this knowledge to better understand cognitive dysfunction and addiction disorders and to develop novel therapeutic treatments.

The three main research components of his laboratory are focused on the themes of the basic neurobiology of cognition and addiction, neurobehavioral toxicology and the development of novel therapeutic treatments for cognitive dysfunction and substance abuse. Currently, our principal research focus concerns nicotine. We have documented the basic effects of nicotine on learning memory and attention as well as nicotine self-administration. We are continuing with more mechanistic studies in rat models using selective lesions, local infusions and neurotransmitter interaction studies. We have found that nicotine improves memory performance not only in normal rats, but also in rats with lesions of hippocampal and basal forebrain connections. We are concentrating on alpha7 and alpha4beta2 nicotinic receptor subtypes in the hippocampus, amygdala , thalamus and frontal cortex and how they interact with dopamine D1 and D2 and glutamate NMDA systems with regard to memory and addiction. I am also conducting studies on human cognitive behavior. We have current studies to assess nicotine effects on attention, memory and mental processing speed in schizophrenia, Alzheimer's Disease and Attention Deficit Hyperactivity Disorder. In the area of neurobehavioral toxicology, I have continuing projects to characterize the adverse effects of prenatal and adolescent nicotine exposure. Our primary project in neurobehavioral toxicology focuses on the cognitive deficits caused by the marine toxins. The basic and applied aims of our research complement each other nicely. The findings concerning neural mechanisms underlying cognitive function help direct the behavioral toxicology and therapeutic development studies, while the applied studies provide important functional information concerning the importance of the basic mechanisms under investigation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.