Trade-off in the effect of the APOE gene on the ages at onset of cardiocascular disease and cancer across ages, gender, and human generations.

Abstract

Decades of studies of candidate genes show their complex role in aging-related traits. We focus on apolipoprotein E e2/3/4 polymorphism and ages at onset of cardiovascular diseases (CVD) and cancer in the parental and offspring generations of the Framingham Heart Study participants to gain insights on the role of age and gender across generations in genetic trade-offs. The analyses show that the apolipoprotein E e4 allele carriers live longer lives without cancer than the non-e4 allele carriers in each generation. The role of the e4 allele in onset of CVD is age- and generation-specific, constituting two modes of sexually dimorphic genetic trade-offs. In offspring, the e4 allele confers risk of CVD primarily in women and can protect against cancer primarily in men of the same age. In the parental generation, genetic trade-off is seen in different age groups, with a protective role of the e4 allele against cancer in older men and its detrimental role in CVD in younger women. The puzzling complexity of genetic mechanisms working in different genders, ages, and environments calls for more detail and systemic analyses beyond those adapted in current large-scale genetic association studies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1089/rej.2012.1362

Publication Info

Kulminski, Alexander M, Irina Culminskaya, Konstantin G Arbeev, Svetlana V Ukraintseva, Liubov Arbeeva and Anatoli I Yashin (2013). Trade-off in the effect of the APOE gene on the ages at onset of cardiocascular disease and cancer across ages, gender, and human generations. Rejuvenation Res, 16(1). pp. 28–34. 10.1089/rej.2012.1362 Retrieved from https://hdl.handle.net/10161/14872.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kulminski

Alexander Kulminski

Research Professor in the Social Science Research Institute
Kulminskaya

Irina Kulminskaya

Research Scientist, Senior
Arbeev

Konstantin Arbeev

Associate Research Professor in the Social Science Research Institute

Konstantin G. Arbeev received the M.S. degree in Applied Mathematics from Moscow State University (branch in Ulyanovsk, Russia) in 1995 and the Ph.D. degree in Mathematics and Physics (specialization in Theoretical Foundations of Mathematical Modeling, Numerical Methods and Programming) from Ulyanovsk State University (Russia) in 1999. He was a post-doctoral fellow in Max Planck Institute for Demographic Research in Rostock (Germany) before moving to Duke University in 2004 to work as a Research Scientist and a Senior Research Scientist in the Department of Sociology and the Social Science Research Institute (SSRI).  He is currently an Associate Research Professor in SSRI. Dr. Arbeev's major research interests are related to three interconnected fields of biodemography, biostatistics and genetic epidemiology as pertains to research on aging. The focus of his research is on discovering genetic and non-genetic factors that can affect the process of aging and determine longevity and healthy lifespan. He is interested in both methodological advances in this research area as well as their practical applications to analyses of large-scale longitudinal studies with phenotypic, genetic and, recently, genomic information. Dr. Arbeev authored and co-authored more than 150 peer-reviewed publications in these areas.

Ukraintseva

Svetlana Ukraintseva

Research Professor in the Social Science Research Institute

Dr. Ukraintseva studies causes of human aging and related decline in resilience, to identify genetic and other factors responsible for the increase in mortality risk with age eventually limiting longevity. She explores complex relationships, including trade-offs, between physiological aging-changes and risks of major diseases (with emphasis on Alzheimer’s and cancer), as well as survival, to find new genetic and other targets for anti-aging interventions and disease prevention. She also investigates possibilities of repurposing of existing vaccines and treatments for AD prevention and interventions into the aging. For this, Dr. Ukraintseva and her team use data from several large human studies containing rich genetic and phenotypic information (including longitudinal measurements) on thousands of individuals. Dr. Ukraintseva is a PI and Key Investigator on several NIH funded grants, and has more than 130 peer-reviewed publications, including in major journals such as Nature Reviews, Stroke, European Journal of Human Genetics, and some other.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.