Disseminated Adenovirus Infection After Combined Liver-Kidney Transplantation
Date
2018-11-20
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Hemmersbach-Miller, Marion, Emily S Bailey, Matthew Kappus, Vinod K Prasad, Gregory C Gray and J Andrew Alspaugh (2018). Disseminated Adenovirus Infection After Combined Liver-Kidney Transplantation. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 8. 10.3389/fcimb.2018.00408 Retrieved from https://hdl.handle.net/10161/17684.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Matthew Robert Kappus

Vinod K. Prasad
1. Expanding the role of umbilical cord blood transplants for inherited metabolic disorders.
2. Impact of histocompatibility and other determinants of alloreactivity on clinical outcomes of unrelated cord blood transplants.
3. Studies to analyse the impact of Killer Immunoglobulin receptors on the outcomes of hematopoietic stem cell transplantation utilizing haploidentical, CD34 selected, familial grafts.
4. Propective longitudinal study of serial monitoring of adenovirus in allogenic transpants(SMAART)patients.
5. Use of mesenchymal stem cells for the treatment of GVHD

James Andrew Alspaugh
The focus of my research is to understand the ways in which microorganisms sense and respond to changes in their environment. As microbial pathogens enter the infected host, dramatic genetic and phenotypic events occur that allow these organisms to survive in this harsh environment. We study the model fungal organism Cryptococcus neoformans to define signal transduction pathways associated with systemic fungal diseases. This pathogenic fungus causes lethal infections of the central nervous system in patients with AIDS and other immunological disorders. In addition to being an important pathogen, C. neoformans displays well-characterized and inducible virulence determinants. It is an outstanding system for dissecting the signaling pathways associated with pathogenicity.
The main techniques used in the lab are those of molecular genetics. We are able to readily mutate C. neoformans genes by homologous recombination. Mutant strains with disruptions in targeted genes are then evaluated in vitro for various phenotypes including altered expression of polysaccharide capsule and melanin. The effects of gene disruption on pathogenicity are also evaluated in animal models of cryptococcal disease. Using these techniques, we have identified a novel G-alpha protein/cAMP-dependent signaling pathway associated with mating and pathogenicity.
This research is complemented by the other investigators in the Duke University Mycology Research Unit. The members of this research community are pursuing studies in fungal pathogenesis, identifying novel antifungal drug targets, and studying the ecology of several medically important fungi.
Keywords: Microbial Pathogenesis
Cryptococcus neoformans
Signal transduction
Fungal mating
G proteins
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.