Stable Phase Retrieval from Locally Stable and Conditionally Connected Measurements.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats



This paper is concerned with stable phase retrieval for a family of phase retrieval models we name "locally stable and conditionally connected" (LSCC) measurement schemes. For every signal $f$, we associate a corresponding weighted graph $G_f$, defined by the LSCC measurement scheme, and show that the phase retrievability of the signal $f$ is determined by the connectivity of $G_f$. We then characterize the phase retrieval stability of the signal $f$ by two measures that are commonly used in graph theory to quantify graph connectivity: the Cheeger constant of $G_f$ for real valued signals, and the algebraic connectivity of $G_f$ for complex valued signals. We use our results to study the stability of two phase retrieval models that can be cast as LSCC measurement schemes, and focus on understanding for which signals the "curse of dimensionality" can be avoided. The first model we discuss is a finite-dimensional model for locally supported measurements such as the windowed Fourier transform. For signals "without large holes", we show the stability constant exhibits only a mild polynomial growth in the dimension, in stark contrast with the exponential growth which uniform stability constants tend to suffer from; more precisely, in $R^d$ the constant grows proportionally to $d^{1/2}$, while in $C^d$ it grows proportionally to $d$. We also show the growth of the constant in the complex case cannot be reduced, suggesting that complex phase retrieval is substantially more difficult than real phase retrieval. The second model we consider is an infinite-dimensional phase retrieval problem in a principal shift invariant space. We show that despite the infinite dimensionality of this model, signals with monotone exponential decay will have a finite stability constant. In contrast, the stability bound provided by our results will be infinite if the signal's decay is polynomial.







Ingrid Daubechies

James B. Duke Distinguished Professor of Mathematics and Electrical and Computer Engineering

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.