Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.





Published Version (Please cite this version)


Publication Info

Jung, Y, H Ji, Z Chen, H Fai Chan, L Atchison, B Klitzman, G Truskey, KW Leong, et al. (2015). Scaffold-free, Human Mesenchymal Stem Cell-Based Tissue Engineered Blood Vessels. Sci Rep, 5. p. 15116. 10.1038/srep15116 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Bruce Klitzman

Associate Professor Emeritus in Surgery

Our overriding interests are in the fields of tissue engineering, wound healing, biosensors, and long term improvement of medical device implantation. My basic research interests are in the area of physiological mechanisms of optimizing substrate transport to tissue. This broad topic covers studies on a whole animal, whole organ, hemorheological, microvascular, cellular, ultrastructural, and molecular level. The current projects include:
1) control of blood flow and flow distribution in the microcirculation,
2) the effects of long-term synthetic and biologic implants on substrate transport to tissues,
3) tissue engineering; combining isolated cells, especially adult stem cells, with biomaterials to form specialized composite structures for implantation, with particular emphasis on endothelial cell physiology and its alteration by isolation and seeding on biomaterials.
4) decreasing the thrombogenicity of synthetic blood vessels and other blood-contacting devices, and improving their overall performance and biocompatibility.
5) reducing tissue damage resulting from abnormal perfusion (e.g., relative ischemia, anoxia, etc.) and therapies which minimize ischemic damage.
6) biosensor function, particularly glucose sensors in normal and diabetics.
7) measurement of tissue blood flow and oxygenation as an indicator of tissue viability and functional potential.
8) development of biocompatible materials for soft tissue reconstruction or augmentation.
9) improving performance of glaucoma drainage devices by directing a more favorable foreign body reaction
10) wound healing; particularly internal healing around foreign materials and the effect and prevention of microbes around implanted devices.


George A. Truskey

R. Eugene and Susie E. Goodson Distinguished Professor of Biomedical Engineering

My research interests focus upon the effect of physical forces on the function of vascular cells and skeletal muscle, cell adhesion, and the design of engineered tissues.  Current research projects examine the  effect of endothelial cell senescence upon permeability to macromolecules and the response to fluid shear stress, the development of microphysiological blood vessels and muscles for evaluation of drug toxicity and the design of engineered endothelialized blood vessels and skeletal muscle bundles.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.