Comparison of 12 surrogates to characterize CT radiation risk across a clinical population.

Loading...
Thumbnail Image

Date

2021-02-23

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

87
views
195
downloads

Citation Stats

Abstract

Objectives

Quantifying radiation burden is essential for justification, optimization, and personalization of CT procedures and can be characterized by a variety of risk surrogates inducing different radiological risk reflections. This study compared how twelve such metrics can characterize risk across patient populations.

Methods

This study included 1394 CT examinations (abdominopelvic and chest). Organ doses were calculated using Monte Carlo methods. The following risk surrogates were considered: volume computed tomography dose index (CTDIvol), dose-length product (DLP), size-specific dose estimate (SSDE), DLP-based effective dose (EDk ), dose to a defining organ (ODD), effective dose and risk index based on organ doses (EDOD, RI), and risk index for a 20-year-old patient (RIrp). The last three metrics were also calculated for a reference ICRP-110 model (ODD,0, ED0, and RI0). Lastly, motivated by the ICRP, an adjusted-effective dose was calculated as [Formula: see text]. A linear regression was applied to assess each metric's dependency on RI. The results were characterized in terms of risk sensitivity index (RSI) and risk differentiability index (RDI).

Results

The analysis reported significant differences between the metrics with EDr showing the best concordance with RI in terms of RSI and RDI. Across all metrics and protocols, RSI ranged between 0.37 (SSDE) and 1.29 (RI0); RDI ranged between 0.39 (EDk) and 0.01 (EDr) cancers × 103patients × 100 mGy.

Conclusion

Different risk surrogates lead to different population risk characterizations. EDr exhibited a close characterization of population risk, also showing the best differentiability. Care should be exercised in drawing risk predictions from unrepresentative risk metrics applied to a population.

Key points

• Radiation risk characterization in CT populations is strongly affected by the surrogate used to describe it. • Different risk surrogates can lead to different characterization of population risk. • Healthcare professionals should exercise care in ascribing an implicit risk to factors that do not closely reflect risk.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s00330-021-07753-9

Publication Info

Ria, Francesco, Wanyi Fu, Jocelyn Hoye, W Paul Segars, Anuj J Kapadia and Ehsan Samei (2021). Comparison of 12 surrogates to characterize CT radiation risk across a clinical population. European radiology. 10.1007/s00330-021-07753-9 Retrieved from https://hdl.handle.net/10161/22390.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ria

Francesco Ria

Assistant Professor of Radiology

Dr. Francesco Ria is a medical physicist and he serves as an Assistant Professor in the Department of Radiology. Francesco has an extensive expertise in the assessment of procedure performances in radiology. In particular, his research activities focus on the simultaneous evaluation of radiation dose and image quality in vivo in computed tomography providing a comprehensive evaluation of radiological exams. Moreover, Francesco is developing and investigating novel mathematical models that, uniquely in the radiology field, can incorporate a comprehensive and quantitative risk-to-benefit assessment of the procedures; he is continuing to apply his expertise towards the definition of new patient specific risk metrics, and in the assessment of image quality in vivo also using state-of-the-art imaging technology, such as photon counting computed tomography scanners, and machine learning reconstruction algorithms.

Dr. Ria is a member of the American Association of Physicists in Medicine task group 392 (Investigation and Quality Control of Automatic Exposure Control System in CT), of the American Association of Physicists in Medicine Public Education working group (WGATE), and of the Italian Association of Medical Physics task group Dose Monitoring in Diagnostic Imaging.

Samei

Ehsan Samei

Reed and Martha Rice Distinguished Professor of Radiology

Dr. Ehsan Samei, PhD, DABR, FAAPM, FSPIE, FAIMBE, FIOMP, FACR is a Persian-American medical physicist. He is the Reed and Martha Rice Distinguished Professor of Radiology, and Professor of Medical Physics, Biomedical Engineering, Physics, and Electrical and Computer Engineering at Duke University. He serves as the Chief Imaging Physicist for Duke University Health System, the Director of the Carl E Ravin Advanced Imaging Laboratories and the Center for Virtual Imaging Trials (CVIT), and co-PI of one the five Centers of Excellence in Regulatory Science and Innovation (CERSI), Triangle CERSI. He is certified by the American Board of Radiology, recognized as a Distinguished Investigator by the Academy of Radiology Research, and awarded Fellow by five professional organization. He founded/co-founded the Duke Medical Physics Program, the Duke Imaging Physics Residency Program, the Duke Clinical Imaging Physics Group, the Center for Virtual Imaging Trials, and the Society of Directors of Academic Medical Physics Programs (SDAMPP). He has held senior leadership positions in the AAPM, SPIE, SDAMPP, and RSNA, including election to the presidency of the SEAAPM (2010-2011), SDAMPP (2011), and AAPM (2023).

Dr. Samei's scientific expertise include x-ray imaging, theoretical imaging models, simulation methods, and experimental techniques in medical image formation, quantification, and perception. His research aims to bridge the gap between scientific scholarship and clinical practice, in the meaningful realization of translational research, and in clinical processes that are informed by scientific evidence. He has advanced image quality and safety metrics and radiometrics that are clinically relevant and that can be used to design, optimize, and monitor interpretive and quantitative performance of imaging techniques. These have been implemented in advanced imaging performance characterization, procedural optimization, and clinical dose and quality analytics. His most recent research interests have been virtual clinical trial across a broad spectrum of oncologic, pulmonary, cardiac, and vascular diseases, and developing methodological advances that provide smart fusions of principle-informed and AI-based, data-informed approaches to scientific inquiry.

Dr. Samei has mentored over 140 trainees (graduate and postgraduate). He has more than 1400 scientific publications including more than 360 referred journal articles, 600 conference presentations, and 4 books. Citations to his work is reflected in an h-index of 74 and a Weighted Relative Citation Ratio of 613. His laboratory of over 20 researchers has been supported continuously over two decades by 44 extramural grants, culminating in a NIH Program Project grant in 2021 to establish the national Center for Virtual Imaging Trials (CVIT), joining a small number of prominent Biomedical Technology Research Centers across the nation. In 2023, he, along with 3 other PIs, was awarded to lead one of five national Centers of Excellence in Regulatory Science and Innovation (Triangle CERSI) by the FDA.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.