The effects of osmotic stress on the structure and function of the cell nucleus.
Date
2010
Authors
Advisors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Abstract
Chondrocytes maintain cartilage by transducing joint load into appropriate biosynthetic activity, a process commonly known as mechanotransduction. Malfunctioning mechanotransduction leads to cartilage degradation and osteoarthritis. The mechanism of mechanotransduction is only partially understood but osmotic stresses are thought to play an important role. This study shows that the chondrocyte nucleus shrinks and wrinkles under hyper-osmotic stress. It shrinks because the chromatin inside the nucleus contracts as the macromolecules in the cell become more crowded. It wrinkles because the nuclear lamina buckles as the nucleus contracts. These morphological changes accelerate transport across the nuclear envelope. Many cells have organized actin caps around their nuclei that constrain the nucleus from contracting under hyper-osmotic stress. Agents exist that can reverse this loss of osmotic sensitivity in vitro without damaging the cell.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Citation
Finan, John Desmond (2010). The effects of osmotic stress on the structure and function of the cell nucleus. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/2974.
Collections
Except where otherwise noted, student scholarship that was shared on DukeSpace after 2009 is made available to the public under a Creative Commons Attribution / Non-commercial / No derivatives (CC-BY-NC-ND) license. All rights in student work shared on DukeSpace before 2009 remain with the author and/or their designee, whose permission may be required for reuse.