A stochastic-Lagrangian particle system for the Navier-Stokes equations

Loading...
Thumbnail Image

Date

2008-11-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

87
views
38
downloads

Citation Stats

Abstract

This paper is based on a formulation of the Navier-Stokes equations developed by Constantin and the first author (Commun. Pure Appl. Math. at press, arXiv:math.PR/0511067), where the velocity field of a viscous incompressible fluid is written as the expected value of a stochastic process. In this paper, we take N copies of the above process (each based on independent Wiener processes), and replace the expected value with 1/N times the sum over these N copies. (We note that our formulation requires one to keep track of N stochastic flows of diffeomorphisms, and not just the motion of N particles.) We prove that in two dimensions, this system of interacting diffeomorphisms has (time) global solutions with initial data in the space C1,α which consists of differentiable functions whose first derivative is α Hölder continuous (see section 3 for the precise definition). Further, we show that as N → ∞ the system converges to the solution of Navier-Stokes equations on any finite interval [0, T]. However for fixed N, we prove that this system retains roughly O(1/N) times its original energy as t → ∞. Hence the limit N → ∞ and T → ∞ do not commute. For general flows, we only provide a lower bound to this effect. In the special case of shear flows, we compute the behaviour as t → ∞ explicitly. © 2008 IOP Publishing Ltd and London Mathematical Society.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1088/0951-7715/21/11/004

Publication Info

Iyer, Gautam, and Jonathan Mattingly (2008). A stochastic-Lagrangian particle system for the Navier-Stokes equations. Nonlinearity, 21(11). pp. 2537–2553. 10.1088/0951-7715/21/11/004 Retrieved from https://hdl.handle.net/10161/21353.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.