Pleiotropic <i>MLLT10</i> variation confers risk of meningioma and estrogen-mediated cancers.

Abstract

Background

Risk of tumors of the breast, ovary, and meninges has been associated with hormonal factors and with one another. Genome-wide association studies (GWAS) identified a meningioma risk locus on 10p12 near previous GWAS hits for breast and ovarian cancers, raising the possibility of genetic pleiotropy.

Methods

We performed imputation-based fine-mapping in three case-control datasets of meningioma (927 cases, 790 controls), female breast cancer (28 108 cases, 22 209 controls), and ovarian cancer (25 509 cases, 40 941 controls). Analyses were stratified by sex (meningioma), estrogen receptor (ER) status (breast), and histotype (ovarian), then combined using subset-based meta-analysis in ASSET. Lead variants were assessed for association with additional traits in UK Biobank to identify potential effect-mediators.

Results

Two-sided subset-based meta-analysis identified rs7084454, an expression quantitative trait locus (eQTL) near the MLLT10 promoter, as lead variant (5.7 × 10-14). The minor allele was associated with increased risk of meningioma in females (odds ratio (OR) = 1.42, 95% Confidence Interval (95%CI):1.20-1.69), but not males (OR = 1.19, 95%CI: 0.91-1.57). It was positively associated with ovarian (OR = 1.09, 95%CI:1.06-1.12) and ER+ breast (OR = 1.05, 95%CI: 1.02-1.08) cancers, and negatively associated with ER- breast cancer (OR = 0.91, 95%CI: 0.86-0.96). It was also associated with several adiposity traits (P < 5.0 × 10-8), but adjusting for body mass index did not attenuate its association with meningioma. MLLT10 and ESR1 expression were positively correlated in normal meninges (P = .058) and meningioma tumors (P = .0065).

Conclusions

We identify a MLLT10 eQTL positively associated with risk of female meningioma, ER+ breast cancer, ovarian cancer, and obesity, and implicate a potential estrogenic mechanism underlying this pleiotropy.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1093/noajnl/vdac044

Publication Info

Walsh, Kyle M, Chenan Zhang, Lisa Calvocoressi, Helen M Hansen, Andrew Berchuck, Joellen M Schildkraut, Melissa L Bondy, Margaret Wrensch, et al. (2022). Pleiotropic MLLT10 variation confers risk of meningioma and estrogen-mediated cancers. Neuro-oncology advances, 4(1). p. vdac044. 10.1093/noajnl/vdac044 Retrieved from https://hdl.handle.net/10161/26542.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Walsh

Kyle Walsh

Associate Professor in Neurosurgery

Dr. Walsh is Associate Professor of Neurosurgery and Pathology, Director of the Division of Neuro-epidemiology, and a Senior Fellow in the Duke Center for the Study of Aging and Human Development. He leads Duke’s Neuro-epidemiology Lab, which integrates bench science with statistical methods to study the neurobiology of glial senescence and gliomagenesis. This research interrogates human genomic and epigenomic profiles to identify both heritable and modifiable factors that contribute to neurologic and physical decline, applying these approaches to studying the shared neurobiology of cognition, glial senescence, and gliomagenesis. The lab has a long history studying telomere maintenance in pre-malignant cells and its role in the development of cancer, most notably glioblastoma.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.