Associations between birth and one year anthropometric measurements and IGF2 and IGF2R genetic variants in African American and Caucasian American infants.
Date
2013-01
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Insulin-like growth factor 2 receptor (IGF2R) and insulin-like growth factor 2 (IGF2) genetic variants have been inconsistently associated with low birth weight and birth length in Caucasian and Asian infants, however few studies have included African Americans (AA). Generalized linear models and logistic regression models were used to examine associations between IGF2R single nucleotide polymorphisms (SNP) rs629849 and rs8191754, and IGF2 SNP rs680 and infant anthropometric measurements, in a racially diverse birth cohort in Durham County, North Carolina. Caucasian American (CA) carriers of the IGF2R SNP rs629849 were heavier (P = 0.02) and longer (P = 0.003) at birth, however body size at age 1 yr was similar to that of AA. Birth length significantly differed between carriers and non-carriers of the IGF2 rs680 variant in both AA (P = 0.04) and CA infants (P = 0.03). Both AA and CA carriers were 1 cm shorter at birth compared to non-carriers. We found no evidence for an association between rs8191754 and infant anthropometric measurements. Associations between SNPs andone year weight gain were only observed for rs680; CA infant carriers of rs680 variants weighed less than non-carriers at year one (P = 0.03); however, no associations were found in AA infants at year one. Larger studies using ancestral markers are required to disentangle these associations.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Vidal, Adriana C, Francine Overcash, Susan K Murphy, Amy P Murtha, Joellen M Schildkraut, Michele R Forman, Wendy Demark-Wahnefried, Joanne Kurtzberg, et al. (2013). Associations between birth and one year anthropometric measurements and IGF2 and IGF2R genetic variants in African American and Caucasian American infants. Journal of pediatric genetics, 2(3). pp. 119–127. 10.3233/pge-13064 Retrieved from https://hdl.handle.net/10161/24678.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Susan Kay Murphy
Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease.
Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).
Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.
Joellen Martha Schildkraut
Dr. Schildkraut is an epidemiologist whose research includes the molecular epidemiology of ovarian, breast and brain cancers. Dr. Schildkraut's research interests include the study of the interaction between genetic and environmental factors. She is currently involved in a large study of genome wide association and ovarian cancer risk and survival. Some of her work is also focused on particular genetic pathways including the DNA repair and apoptosis pathways. She currently leads a study of African American women diagnosed with ovarian cancer. She is also collaborating in a large a case-control study of meningioma risk factors and with which a genome wide association analysis is about to commence.
Joanne Kurtzberg
Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine. Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University. The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program. The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.
Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.
In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA. She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.