Levi-flat Minimal Hypersurfaces in Two-dimensional Complex Space Forms

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

202
views
142
downloads

Abstract

The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when the curvature of the space form is zero, i.e., when the space form is complex 2-space with its standard flat metric, there is an additional `exceptional' example that has no continuous symmetries but is invariant under a lattice of translations. Up to isometry and homothety, this is the unique example with no continuous symmetries.

Department

Description

Provenance

Citation

Scholars@Duke

Bryant

Robert Bryant

Phillip Griffiths Professor of Mathematics

My research concerns problems in the geometric theory of partial differential equations.  More specifically, I work on conservation laws for PDE, Finsler geometry, projective geometry, and Riemannian geometry, including calibrations and the theory of holonomy.

Much of my work involves or develops techniques for studying systems of partial differential equations that arise in geometric problems.  Because of their built-in invariance properties, these systems often have special features that make them difficult to treat by the standard tools of analysis, and so my approach uses ideas and techniques from the theory of exterior differential systems, a collection of tools for analyzing such PDE systems that treats them in a coordinate-free way, focusing instead on their properties that are invariant under diffeomorphism or other transformations.

I’m particularly interested in geometric structures constrained by natural conditions, such as Riemannian manifolds whose curvature tensor satisfies some identity or that supports some additional geometric structure, such as a parallel differential form or other geometric structures that satisfy some partial integrability conditions and in constructing examples of such geometric structures, such as Finsler metrics with constant flag curvature.

I am also the Director of the Simons Collaboration Special Holonomy in Geometry, Analysis, and Physics, and a considerable focus of my research and that of my students is directed towards problems in this area.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.