Average Weighted Accuracy: Pragmatic Analysis for a Rapid Diagnostics in Categorizing Acute Lung Infections (RADICAL) Study.


Patient management relies on diagnostic information to identify appropriate treatment. Standard evaluations of diagnostic tests consist of estimating sensitivity, specificity, positive/negative predictive values, likelihood ratios, and accuracy. Although useful, these metrics do not convey the tests' clinical value, which is critical to informing decision-making. Full appreciation of the clinical impact of a diagnostic test requires analyses that integrate sensitivity and specificity, account for the disease prevalence within the population of test application, and account for the relative importance of specificity vs sensitivity by considering the clinical implications of false-positive and false-negative results. We developed average weighted accuracy (AWA), representing a pragmatic metric of diagnostic yield or global utility of a diagnostic test. AWA can be used to compare test alternatives, even across different studies. We apply the AWA methodology to evaluate a new diagnostic test developed in the Rapid Diagnostics in Categorizing Acute Lung Infections (RADICAL) study.





Published Version (Please cite this version)


Publication Info

Liu, Ying, Ephraim L Tsalik, Yunyun Jiang, Emily R Ko, Christopher W Woods, Ricardo Henao and Scott R Evans (2020). Average Weighted Accuracy: Pragmatic Analysis for a Rapid Diagnostics in Categorizing Acute Lung Infections (RADICAL) Study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 70(12). pp. 2736–2742. 10.1093/cid/ciz437 Retrieved from https://hdl.handle.net/10161/21655.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Ephraim Tsalik

Adjunct Associate Professor in the Department of Medicine

My research at Duke has focused on understanding the dynamic between host and pathogen so as to discover and develop host-response markers that can diagnose and predict health and disease.  This new and evolving approach to diagnosing illness has the potential to significantly impact individual as well as public health considering the rise of antibiotic resistance.

With any potential infectious disease diagnosis, it is difficult, if not impossible, to determine at the time of presentation what the underlying cause of illness is.  For example, acute respiratory illness is among the most frequent reasons for patients to seek care. These symptoms, such as cough, sore throat, and fever may be due to a bacterial infection, viral infection, both, or a non-infectious condition such as asthma or allergies.  Given the difficulties in making the diagnosis, most patients are inappropriately given antibacterials.  However, each of these etiologies (bacteria, virus, or something else entirely) leaves a fingerprint embedded in the host’s response. We are very interested in finding those fingerprints and exploiting them to generate new approaches to understand, diagnose, and manage disease.

These principles also apply to sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Just as with acute respiratory illness, it is often difficult to identify whether infection is responsible for a patient’s critical illness.  We have embarked on a number of research programs that aim to better identify sepsis; define sepsis subtypes that can be used to guide future clinical research; and to better predict sepsis outcomes.  These efforts have focused on many systems biology modalities including transcriptomics, miRNA, metabolomics, and proteomics.  Consequently, our Data Science team has utilized these highly complex data to develop new statistical methods, furthering both the clinical and statistical research communities.

These examples are just a small sampling of the breadth of research Dr. Tsalik and his colleagues have conducted.  

In April 2022, Dr. Tsalik has joined Danaher Diagnostics as the VP and Chief Scientific Officer for Infectious Disease, where he is applying this experience in biomarkers and diagnostics to shape the future of diagnostics in ID. 


Emily Ray Ko

Assistant Professor of Medicine

Clinical and translational research, COVID-19 therapeutics, clinical biomarkers for infectious disease.


Christopher Wildrick Woods

Wolfgang Joklik Distinguished Professor of Global Health

1. Emerging Infections
2. Global Health
3. Epidemiology of infectious diseases
4. Clinical microbiology and diagnostics
5. Bioterrorism Preparedness
6. Surveillance for communicable diseases
7. Antimicrobial resistance


Ricardo Henao

Associate Professor of Biostatistics & Bioinformatics

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.