Increased renal dopamine and acute renal adaptation to a high-phosphate diet.

Abstract

The current experiments explore the role of dopamine in facilitating the acute increase in renal phosphate excretion in response to a high-phosphate diet. Compared with a low-phosphate (0.1%) diet for 24 h, mice fed a high-phosphate (1.2%) diet had significantly higher rates of phosphate excretion in the urine associated with a two- to threefold increase in the dopamine content of the kidney and in the urinary excretion of dopamine. Animals fed a high-phosphate diet had a significant increase in the abundance and activity of renal DOPA (l-dihydroxyphenylalanine) decarboxylase and significant reductions in renalase, monoamine oxidase A, and monoamine oxidase B. The activity of protein kinase A and protein kinase C, markers of activation of renal dopamine receptors, were significantly higher in animals fed a high-phosphate vs. a low-phosphate diet. Treatment of rats with carbidopa, an inhibitor of DOPA decarboxylase, impaired adaptation to a high-phosphate diet. These experiments indicate that the rapid adaptation to a high-phosphate diet involves alterations in key enzymes involved in dopamine synthesis and degradation, resulting in increased renal dopamine content and activation of the signaling cascade used by dopamine to inhibit the renal tubular reabsorption of phosphate.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1152/ajprenal.00744.2010

Publication Info

Weinman, Edward J, Rajatsubhra Biswas, Deborah Steplock, Peili Wang, Yuen-Sum Lau, Gary V Desir and Shirish Shenolikar (2011). Increased renal dopamine and acute renal adaptation to a high-phosphate diet. American journal of physiology. Renal physiology, 300(5). pp. F1123–F1129. 10.1152/ajprenal.00744.2010 Retrieved from https://hdl.handle.net/10161/17239.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Shenolikar

Shirish Shenolikar

Professor Emeritus of Psychiatry and Behavioral Sciences

Protein phosphorylation controls a wide range of physiological processes in mammalian tissues. Phosphorylation state of cellular proteins is controlled by the opposing actions of protein kinases and phosphatases that are regulated by hormones, neurotransmitters, growth factors and other environmental cues. Our research attempts to understand the communication between protein kinases and phosphatases that dictates cellular protein phosphorylation and the cell's response to hormones. Over the last decade, our work has provided critical information about the role of protein phosphatase-1 (PP1) in controlling synaptic function, cell stress, gene expression and growth. We have generated a large repertoire of reagents to decipher PP1's role in signaling pathways in mammalian cells and tissues. Emerging evidence suggests that in many cells, PP1 activity is fine tuned by the protein, inhibitor-1 (I-1). A major focus of our research is to elucidate the role of I-1 in kinase-phosphatase cross-talk and impact of the altered I-1 gene expression seen in several human diseases. Our studies showed that recognition of cellular substrates by PP1 is also directed by its association with a variety of targeting subunits that are themselves also subject to physiological control. Thus, the overall focus of our research is to define the physiological mechanisms that regulate PP1 functions relevant to human health and disease.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.