Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report.
Date
2022-10
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Cable, Jennifer, Anthony Fauci, William E Dowling, Stephan Günther, Dennis A Bente, Pragya Dhruv Yadav, Lawrence C Madoff, Lin-Fa Wang, et al. (2022). Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Annals of the New York Academy of Sciences. 10.1111/nyas.14898 Retrieved from https://hdl.handle.net/10161/26166.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Michael Dee Gunn
The focus of my work is on understanding how dendritic cells, monocytes, and macrophages regulate immune responses, contribute to specific disease pathologies, and can be manipulated to stimulate or inhibit specific immune responses. We are also using our knowledge of immunology to develop diagnostics and therapeutics for a variety of human diseases.
Lab History
The lab started with our discovery of the lymphoid chemokines, which regulate the migration of lymphocytes and dendritic cells to and within secondary lymphoid organs. We identified the chemokine (CCL21) that mediates the entry of naïve T cells and activated dendritic cells into lymph nodes and the chemokine (CXCL13) that mediates the entry of B cells into lymphoid follicles. Our focus then shifted to understanding how specific cell types, primarily dendritic cells, and cell migration events regulate immune responses. We identified murine plasmacytoid dendritic cells; the cell type that causes pulmonary immune pathology during influenza infection; the dendritic cell type that stimulates Th1 immune responses; the cell type that induces neuronal injury in Alzheimer's disease, and the macrophage type that stimulates pulmonary hypertension. Our current work continues these basic studies while applying our findings to models of human disease.
Current Research
Tumor immune therapeutics – We have developed a novel cellular vaccine strategy for the treatment of cancer. This strategy is much simpler, more cost effective, more clinically feasible, and much more efficacious than classic dendritic cell vaccines. We are now determining the mechanisms by which this vaccine induces such potent immune responses and advancing it to initial human clinical trials.
Development of recombinant antibodies as diagnostic reagents – Our lab has developed novel methods to generate recombinant single chain antibodies using phage display technology. We are currently using these methods to generate pathogen-specific antibodies for use in diagnostic tests for a variety of human bacterial, viral, and fungal infections. In collaboration with Duke Biomedical Engineering, we are deploying our antibodies in a novel diagnostic assay platform to develop point-of-care assays for the diagnosis of a variety of emerging pathogens. Our recently developed point-of-care assay for Ebola virus displays a sensitivity superior to PCR at a fraction of the per assay cost.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.