The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.





Published Version (Please cite this version)


Publication Info

Bergin, SM, AR Rathmell, YH Chen, P Charbonneau, ZY Li and BJ Wiley (2012). The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 4(6). pp. 1996–2004. 10.1039/c2nr30126a Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Patrick Charbonneau

Professor of Chemistry

Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.


Benjamin J. Wiley

Professor of Chemistry

In the Wiley Group, we make new nanomaterials by controlling the assembly of atoms in solution, and explore applications for nanomaterials in medicine, catalysis, plasmonics, and electronics. Our goal is to precisely control the size, shape, and composition of materials on the nanometer scale to explore how these parameters affect the fundamental properties of a material, and produce such nanomaterials economically so they can be applied to solve real-world problems.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.