Classification of crystallization outcomes using deep convolutional neural networks.

dc.contributor.author

Bruno, Andrew E

dc.contributor.author

Charbonneau, Patrick

dc.contributor.author

Newman, Janet

dc.contributor.author

Snell, Edward H

dc.contributor.author

So, David R

dc.contributor.author

Vanhoucke, Vincent

dc.contributor.author

Watkins, Christopher J

dc.contributor.author

Williams, Shawn

dc.contributor.author

Wilson, Julie

dc.contributor.editor

Hu, Jianjun

dc.date.accessioned

2018-09-07T15:11:52Z

dc.date.available

2018-09-07T15:11:52Z

dc.date.issued

2018-01

dc.date.updated

2018-09-07T15:11:50Z

dc.description.abstract

The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.

dc.identifier

PONE-D-18-09215

dc.identifier.issn

1932-6203

dc.identifier.issn

1932-6203

dc.identifier.uri

https://hdl.handle.net/10161/17392

dc.language

eng

dc.publisher

Public Library of Science (PLoS)

dc.relation.ispartof

PloS one

dc.relation.isversionof

10.1371/journal.pone.0198883

dc.subject

Science & Technology

dc.subject

Multidisciplinary Sciences

dc.subject

Science & Technology - Other Topics

dc.subject

PROTEIN-CRYSTALLIZATION

dc.subject

IMAGE CLASSIFICATION

dc.subject

VISUAL ANALYSIS

dc.subject

TRAINING SET

dc.subject

TRIALS

dc.subject

RECOGNITION

dc.subject

TEXTURE

dc.subject

PLATES

dc.subject

SUITE

dc.title

Classification of crystallization outcomes using deep convolutional neural networks.

dc.type

Journal article

duke.contributor.orcid

Charbonneau, Patrick|0000-0001-7174-0821

pubs.begin-page

e0198883

pubs.issue

6

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Chemistry

pubs.organisational-group

Physics

pubs.publication-status

Published

pubs.volume

13

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Classification of crystallization outcomes using deep convolutional neural networks.pdf
Size:
5.46 MB
Format:
Adobe Portable Document Format
Description:
Published version