Tooth Root Size, Chewing Muscle Leverage, and the Biology of Homunculus patagonicus (Primates) from the Late Early Miocene of Patagonia

Loading...
Thumbnail Image

Date

2010-09

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

173
views
107
downloads

Citation Stats

Abstract

Inferences about the diet of Miocene platyrrhine monkeys have relied upon the morphology of the molar teeth, specifically the crests on the molars. Using a library of Micro-CT images of a broad comparative sample of living platyrrhines (callitrichines, cebines, pitheciids and atelids), late early Miocene Homunculus, and the early Miocene Tremacebus and Dolichocebus, we extend these inferences by examining the surface areas of the tooth roots, anchor points for the periodontal ligaments. From muscle scars on the skull, we estimate the mechanical leverage of the chewing muscles at bite points from the canine to the last molar. Extant platyrrhines that gouge bark to obtain exudates do not have especially large canine roots or anterior premolar roots compared with their less specialized close relatives. Extant platyrrhines that have more folivorous diets have much larger molar roots than do similar-sized more frugivorous species. Homunculus patagonicus has large postcanine roots relative to body size and poor masticatory leverage compared to the extant platyrrhines in our sample. The large postcanine roots, heavy tooth wear, and moderately-long shearing crests suggests a diet of abrasive, resistant foods. However, relatively poor jaw adductor leverage would have put the masticatory apparatus of Homunculus at a mechanical disadvantage for producing high bite forces compared to the condition in extant platyrrhines. Tremacebus and Dolichocebus, like Homunculus, have larger tooth root surfaces than comparable-sized living platyrrhines. They also resemble Homunculus in being more prognathic and having posteriorly-located temporalis origins - all features of a relatively poor leverage system. ©Asociación Paleontológica Argentina.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.5710/AMGH.v47i3.9

Publication Info

Perry, JMG, RF Kay, SF Vizcaíno and MS Bargo (2010). Tooth Root Size, Chewing Muscle Leverage, and the Biology of Homunculus patagonicus (Primates) from the Late Early Miocene of Patagonia. Ameghiniana, 47(3). pp. 355–371. 10.5710/AMGH.v47i3.9 Retrieved from https://hdl.handle.net/10161/17658.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kay

Richard Frederick Kay

Professor of Evolutionary Anthropology

I have two areas of research:1) the evolution of primates in South America; and 2) the use of primate anatomy to reconstruct the phylogenetic history and adapations of living and extinct primates, especially Anthropoidea.

1) Evolution of primates and mammalian faunal evolution, especially in South America. For the past 30 years, I have been engaged in research in Argentina, Bolivia The Dominican Republic, Peru, and Colombia with three objectives:a) to reconstruct the evolutionary history and adaptive patterns of South America primates and other mammals; b) to establish a more precise geologic chronology for the mammalian faunas between the late Eocene and middle Miocene (between about 36 and about 15 million years ago); and c) to use anatomy and niche structure of modern mammals as a means to reconstruct the evolution of mammalian niche structure in the Neotropics.

2) Primate Anatomy. I am working to reconstruct the phylogeny of primates based (principally) on anatomical evidence; and to infer the adaptations of extinct primates based mainly on cranial and dental evidence.

Field activities
Current fieldwork is focused on the study of terrestrial biotic change in Patagonia through the 'mid-Miocene Climate Optimum' when global climate was moderate and the subtropical zone, with primates and other typically tropical vertebrates, extended their ranges up to 55 degrees of South latitude.

In this collaborative research undertaking with colleagues at University of Washington and Boise State University, the geochronology of the Santa Cruz Formation at in extreme southern Argentina is being refined using radiometric dating. Stratigraphically-controlled collections have been made of vertebrates and plant macro- and microfossils. Climate change and its impact on the biota is assessed 1) using biogeochemical analysis of stable isotopes in fossil mammalian tooth enamel; 2) by documenting changes in mammalian community structure (richness, origination and extinction rates, and ecological morphology); and 3) by documenting changes in vegetation and floral composition through the study of phytoliths. These three independent lines of evidence in a refined geochronologic framework will then be compared with similar evidence from continental sequences in the Northern Hemisphere and oceanic climatic records to improve our understanding of the timing and character of climatic change in continental high latitudes during this temporal interval.

A second field project project in its early stages is the study of the fossil vertebrates of the Amazon Basin. The latter is a collaborative effort of biologists and geologists across schools at Duke (Nicholas School) and among six North American universities. My role is to direct the vertebrate paleontology component of this project in Brazil and Amazonian Peru. The hope is to recover primates from the Oligocene through Early Miocene. New material will shed light on the phylogenetic status of African Paleogene anthropoids, one of which may be the platyrrhine sister-taxon. Also, new remains of fossil primates will help to refine hypotheses about the origins of the modern families and subfamilies of platyrrhines, all of which trace back to an Early Miocene (17-21 Ma) common ancestor. Finally, new fossil primates may further constrain the time of entry of platyrrhines into South America.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.