A systematic assessment and optimization of photon-counting CT for lung density quantifications.
Date
2024-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
Photon-counting computed tomography (PCCT) has recently emerged into clinical use; however, its optimum imaging protocols and added benefits remains unknown in terms of providing more accurate lung density quantification compared to energy-integrating computed tomography (EICT) scanners.Purpose
To systematically assess the performance of a clinical PCCT scanner for lung density quantifications and compare it against EICT.Methods
This cross-sectional study involved a retrospective analysis of subjects scanned (August-December 2021) using a clinical PCCT system. The influence of altering reconstruction parameters was studied (reconstruction kernel, pixel size, slice thickness). A virtual CT dataset of anthropomorphic virtual subjects was acquired to demonstrate the correspondence of findings to clinical dataset, and to perform systematic imaging experiments, not possible using human subjects. The virtual subjects were imaged using a validated, scanner-specific CT simulator of a PCCT and two EICT (defined as EICT A and B) scanners. The images were evaluated using mean absolute error (MAE) of lung and emphysema density against their corresponding ground truth.Results
Clinical and virtual PCCT datasets showed similar trends, with sharper kernels and smaller voxel sizes increasing percentage of low-attenuation areas below -950 HU (LAA-950) by up to 15.7 ± 6.9% and 11.8 ± 5.5%, respectively. Under the conditions studied, higher doses, thinner slices, smaller pixel sizes, iterative reconstructions, and quantitative kernels with medium sharpness resulted in lower lung MAE values. While using these settings for PCCT, changes in the dose level (13 to 1.3 mGy), slice thickness (0.4 to 1.5 mm), pixel size (0.49 to 0.98 mm), reconstruction technique (70 keV-VMI to wFBP), and kernel (Qr48 to Qr60) increased lung MAE by 15.3 ± 2.0, 1.4 ± 0.6, 2.2 ± 0.3, 4.2 ± 0.8, and 9.1 ± 1.6 HU, respectively. At the optimum settings identified per scanner, PCCT images exhibited lower lung and emphysema MAE than those of EICT scanners (by 2.6 ± 1.0 and 9.6 ± 3.4 HU, compared to EICT A, and by 4.8 ± 0.8 and 7.4 ± 2.3 HU, compared to EICT B). The accuracy of lung density measurements was correlated with subjects' mean lung density (p < 0.05), measured by PCCT at optimum setting under the conditions studied.Conclusion
Photon-counting CT demonstrated superior performance in density quantifications, with its influences of imaging parameters in line with energy-integrating CT scanners. The technology offers improvement in lung quantifications, thus demonstrating potential toward more objective assessment of respiratory conditions.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Sotoudeh-Paima, Saman, W Paul Segars, Dhrubajyoti Ghosh, Sheng Luo, Ehsan Samei and Ehsan Abadi (2024). A systematic assessment and optimization of photon-counting CT for lung density quantifications. Medical physics. 10.1002/mp.16987 Retrieved from https://hdl.handle.net/10161/30207.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
William Paul Segars
Our current research involves the use of computer-generated phantoms and simulation techniques to investigate and optimize medical imaging systems and methods. Medical imaging simulation involves virtual experiments carried out entirely on the computer using computational models for the patients as well as the imaging devices. Simulation is a powerful tool for characterizing, evaluating, and optimizing medical imaging systems. A vital aspect of simulation is to have realistic models of the subject's anatomy as well as accurate models for the physics of the imaging process. Without this, the results of the simulation may not be indicative of what would occur in actual clinical studies and would, therefore, have limited practical value. We are leading the development of realistic simulation tools for use toward human and small animal imaging research.
These tools have a wide variety of applications in many different imaging modalities to investigate the effects of anatomical, physiological, physical, and instrumentational factors on medical imaging and to research new image acquisition strategies, image processing and reconstruction methods, and image visualization and interpretation techniques. We are currently applying them to the field of x-ray CT. The motivation for this work is the lack of sufficiently rigorous methods for optimizing the image quality and radiation dose in x-ray CT to the clinical needs of a given procedure. The danger of unnecessary radiation exposure from CT applications, especially for pediatrics, is just now being addressed. Optimization is essential in order for new and emerging CT applications to be truly useful and not represent a danger to the patient. Given the relatively high radiation doses required of current CT systems, thorough optimization is unlikely to ever be done in live patients. It would be prohibitively expensive to fabricate physical phantoms to simulate a realistic range of patient sizes and clinical needs especially when physiologic motion needs to be considered. The only practical approach to the optimization problem is through the use of realistic computer simulation tools developed in our work.
Sheng Luo
Ehsan Abadi
Ehsan Abadi, PhD is an imaging scientist at Duke University. He serves as an Associate Professor in the departments of Radiology and Electrical & Computer Engineering, a faculty member in the Medical Physics Graduate Program and Carl E. Ravin Advanced Imaging Laboratories, and a co-Lead in the Center for Virtual Imaging Trials. Ehsan’s research focuses on quantitative imaging and optimization, computational human modeling, medical imaging simulation, and CT imaging in cardiothoracic and musculoskeletal applications. He is actively involved in developing computational anthropomorphic models with various diseases such as COPD, and scanner-specific simulation platforms (e.g., DukeSim) for imaging systems. Currently, his work is centered on identifying and optimizing imaging systems to ensure accurate and precise quantifications of lung and bone diseases.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.