Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States
Date
2022-12-15
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Subsurface coal mining often induces the formation of acid mine drainage (AMD) in active and abandoned coal mines while coal combustion generates coal combustion residuals (CCR), including fly ash (FA), with elevated levels of toxic metals. Decades of AMD and CCR production have caused major environmental and human health impacts. Given the typically elevated level of oxides in FA, previous studies have examined its potential to neutralize AMD and remove the associated metals. While the neutralization of AMD through reaction with FA has been demonstrated to successfully remove cationic metals, the fate of oxyanion forming elements are less well studied and is the focus of this study. Here we conducted 49 different experiments in which simulated AMD solutions were interacted with representative U.S. (n = 7) and Indian (n = 6) FA samples through controlled liquid to solid ratios in short-term (24 h) and long-term (up to 5 weeks) lab-scale experiments. We show that Class-F FA, originating from Gondwana and Northeastern Tertiary coals in India, has limited neutralization capacity, while Class-C FA, with high CaO and MgO contents from Powder River coals in the U.S. has the greatest AMD neutralization capacity among the studied fly ashes. The neutralization experiments show that AMD-FA reactions cause the removal of cationic elements (i.e., Fe, Mn, and Al) from solution, while at the same time, leaching oxyanion forming elements (i.e., As, Se, Mo, Cr, B, Tl, and Sb) from the FA, increasing the potential environmental risks from the treated leachates. The magnitude of mobilization of these elements depends on their concentrations in the FA and the pH conditions. We show that using FA from the Appalachian and Illinois coals efficiently neutralizes AMD, but also results in secondary contamination of the treated effluents with oxyanion forming elements to levels exceeding drinking water and ecological standards, which could contaminate the ambient environment, whereas neuralization with Powder River Basin Class-C FA induces only limited contamination.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Weinberg, R, R Coyte, Z Wang, D Das and A Vengosh (2022). Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel, 330. pp. 125675–125675. 10.1016/j.fuel.2022.125675 Retrieved from https://hdl.handle.net/10161/26629.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.