Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States

dc.contributor.author

Weinberg, R

dc.contributor.author

Coyte, R

dc.contributor.author

Wang, Z

dc.contributor.author

Das, D

dc.contributor.author

Vengosh, A

dc.date.accessioned

2023-02-19T02:42:56Z

dc.date.available

2023-02-19T02:42:56Z

dc.date.issued

2022-12-15

dc.date.updated

2023-02-19T02:42:54Z

dc.description.abstract

Subsurface coal mining often induces the formation of acid mine drainage (AMD) in active and abandoned coal mines while coal combustion generates coal combustion residuals (CCR), including fly ash (FA), with elevated levels of toxic metals. Decades of AMD and CCR production have caused major environmental and human health impacts. Given the typically elevated level of oxides in FA, previous studies have examined its potential to neutralize AMD and remove the associated metals. While the neutralization of AMD through reaction with FA has been demonstrated to successfully remove cationic metals, the fate of oxyanion forming elements are less well studied and is the focus of this study. Here we conducted 49 different experiments in which simulated AMD solutions were interacted with representative U.S. (n = 7) and Indian (n = 6) FA samples through controlled liquid to solid ratios in short-term (24 h) and long-term (up to 5 weeks) lab-scale experiments. We show that Class-F FA, originating from Gondwana and Northeastern Tertiary coals in India, has limited neutralization capacity, while Class-C FA, with high CaO and MgO contents from Powder River coals in the U.S. has the greatest AMD neutralization capacity among the studied fly ashes. The neutralization experiments show that AMD-FA reactions cause the removal of cationic elements (i.e., Fe, Mn, and Al) from solution, while at the same time, leaching oxyanion forming elements (i.e., As, Se, Mo, Cr, B, Tl, and Sb) from the FA, increasing the potential environmental risks from the treated leachates. The magnitude of mobilization of these elements depends on their concentrations in the FA and the pH conditions. We show that using FA from the Appalachian and Illinois coals efficiently neutralizes AMD, but also results in secondary contamination of the treated effluents with oxyanion forming elements to levels exceeding drinking water and ecological standards, which could contaminate the ambient environment, whereas neuralization with Powder River Basin Class-C FA induces only limited contamination.

dc.identifier.issn

0016-2361

dc.identifier.issn

1873-7153

dc.identifier.uri

https://hdl.handle.net/10161/26629

dc.language

en

dc.publisher

Elsevier BV

dc.relation.ispartof

Fuel

dc.relation.isversionof

10.1016/j.fuel.2022.125675

dc.subject

Coal ash

dc.subject

Acid mine drainage

dc.subject

Metals

dc.subject

Metalloids

dc.subject

Neutralization

dc.subject

Environmental management

dc.title

Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States

dc.type

Journal article

duke.contributor.orcid

Wang, Z|0000-0001-5093-0917

duke.contributor.orcid

Vengosh, A|0000-0001-8928-0157

pubs.begin-page

125675

pubs.end-page

125675

pubs.organisational-group

Duke

pubs.organisational-group

Nicholas School of the Environment

pubs.organisational-group

Student

pubs.organisational-group

Institutes and Provost's Academic Units

pubs.organisational-group

University Institutes and Centers

pubs.organisational-group

Duke Global Health Institute

pubs.organisational-group

Duke Kunshan University

pubs.organisational-group

DKU Faculty

pubs.organisational-group

Nicholas Institute-Energy Initiative

pubs.organisational-group

Earth and Climate Sciences

pubs.publication-status

Published

pubs.volume

330

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AMD-fly neutralization and impact.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format
Description:
Published version