Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products.

Abstract

Background aims

Removing DMSO post-thaw results in: reduced infusion reactions, improved recovery and stability of viable CD34+ cells. Validated methods use 5%-8.3% Dextran 40 with 2.5%-4.2% HSA for this purpose. Recent shortages of clinical grade Dextran require identification of suitable alternatives.

Methods

PBPC were used to compare a standard 2X wash medium of 5 parts 10% Dextran 40 in saline (DEX) with 1 part 25% HSA (8.3% DEX/ 4.2% HSA) with Hydroxyethyl Starch (HES)-based solutions. Cells in replicate bags were diluted with an equal volume of wash solution, equilibrated 5 minutes, the bag filled with wash medium, pelleted and the supernatant expressed. Bags were restored to the frozen volume in wash medium and tested by single platform flow cytometry and CFU. Total viability, viable TNC, MNC, and CD34+ cell recovery, and CD34+ cell viability were compared immediately post-thaw and after 90 minutes.

Results

5.2% HES/4.2% HSA did not differ from our standard in CD34 recovery or viability. Due to concerns that high concentrations of HES could affect renal function we tested 0.6% HES/2.5% HSA resulting in significantly poorer CD34 recovery and viability. Results improved using 2.4% HES/4.2% HSA and when 0.6% HES/4.2%HSA was used no significant differences were seen. CFU assays confirmed no differences between the standard dextran arm and HES at 2.4% or 0.6% so long as HSA was at 4.2%.

Conclusions

We conclude that HES from 0.6% to 5.2% with 4.2% HSA is a suitable substitute for Dextran 40 as a reconstitution/washing medium for PBPC products.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.jcyt.2015.08.007

Publication Info

Zhu, Fenlu, Sarah Heditke, Joanne Kurtzberg, Barbara Waters-Pick, Parameswaran Hari, David A Margolis and Carolyn A Keever-Taylor (2015). Hydroxyethyl starch as a substitute for dextran 40 for thawing peripheral blood progenitor cell products. Cytotherapy, 17(12). pp. 1813–1819. 10.1016/j.jcyt.2015.08.007 Retrieved from https://hdl.handle.net/10161/24615.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.