Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development.
Date
2008-05-07
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
BACKGROUND: Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Todi, Sokol V, Elena Sivan-Loukianova, Julie S Jacobs, Daniel P Kiehart and Daniel F Eberl (2008). Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development. PLoS One, 3(5). p. e2115. 10.1371/journal.pone.0002115 Retrieved from https://hdl.handle.net/10161/4491.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Daniel P. Kiehart
Our intellectual focus is on identifying determinants of cell shape that function during development. Utilizing molecular genetic and reverse genetic approaches in Drosophila, we have shown that conventional nonmuscle myosin is necessary for driving both cell division and post-mitotic cell shape changes for morphogenesis. Currently, we are investigating how myosin elicits cell shape change and how its function is regulated through filament formation, phosphorylation, sub-cellular targeting, small GTP-binding proteins, kinase and phosphatase functions. In fly, we are using novel, near saturating screens to identify mutations that perturb dorsal closure, a model cell sheet movement that requires at least six different filamentous actin and/or actomyosin arrays for proper morphogenesis. Our screens show that nearly all aspects of closure a mutable -- by extrapolating our results, which have thus far screened approximately two-fifths of the fly genome, we project that the function of over 300 genes are required to drive this superficially simple, yet remarkably complex and sophisticated morphogenic process. We have also identified gene products that are necessary for myosin function by genetically recovering second site non-complementing loci and biochemically recovering proteins that bind to myosin. To date, our experiments identify ~30 loci that genetically interact with myosin and a kinase activity that phosphorylates myosin heavy chain and establish genetically, that the Rho signalling pathway is required in concert with nonmuscle myosin II for morphogenesis. Finally, we are using laser microsurgery and micro-manipulation studies to understand the forces that drive morphogenesis. We show that both the amnioserosa and the leading edge of the lateral epidermis contribute to the movements of dorsal closure. Finally, we are examining the role these proteins play in movements that occur during wound healing.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.