Biodemographic Analyses of Longitudinal Data on Aging, Health, and Longevity: Recent Advances and Future Perspectives.


Biodemography became one of the most innovative and fastest growing areas in demography. This progress is fueled by the growing variability and amount of relevant data available for analyses as well as by methodological developments allowing for addressing new research questions using new approaches that can better utilize the potential of these data. In this review paper, we summarize recent methodological advances in biodemography and their diverse practical applications. Three major topics are covered: (1) computational approaches to reconstruction of age patterns of incidence of geriatric diseases and other characteristics such as recovery rates at the population level using Medicare claims data; (2) methodological advances in genetic and genomic biodemography and applications to research on genetic determinants of longevity and health; and (3) biodemographic models for joint analyses of time-to-event data and longitudinal measurements of biomarkers collected in longitudinal studies on aging. We discuss how such data and methodology can be used in a comprehensive prediction model for joint analyses of incomplete datasets that take into account the wide spectrum of factors affecting health and mortality transitions including genetic factors and hidden mechanisms of aging-related changes in physiological variables in their dynamic connection with health and survival.






Published Version (Please cite this version)


Publication Info

Arbeev, Konstantin G, Igor Akushevich, Alexander M Kulminski, Svetlana V Ukraintseva and Anatoliy I Yashin (2017). Biodemographic Analyses of Longitudinal Data on Aging, Health, and Longevity: Recent Advances and Future Perspectives. Adv Geriatr, 2014. 10.1155/2014/957073 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Konstantin Arbeev

Associate Research Professor in the Social Science Research Institute

Konstantin G. Arbeev received the M.S. degree in Applied Mathematics from Moscow State University (branch in Ulyanovsk, Russia) in 1995 and the Ph.D. degree in Mathematics and Physics (specialization in Theoretical Foundations of Mathematical Modeling, Numerical Methods and Programming) from Ulyanovsk State University (Russia) in 1999. He was a post-doctoral fellow in Max Planck Institute for Demographic Research in Rostock (Germany) before moving to Duke University in 2004 to work as a Research Scientist and a Senior Research Scientist in the Department of Sociology and the Social Science Research Institute (SSRI).  He is currently an Associate Research Professor in SSRI. Dr. Arbeev's major research interests are related to three interconnected fields of biodemography, biostatistics and genetic epidemiology as pertains to research on aging. The focus of his research is on discovering genetic and non-genetic factors that can affect the process of aging and determine longevity and healthy lifespan. He is interested in both methodological advances in this research area as well as their practical applications to analyses of large-scale longitudinal studies with phenotypic, genetic and, recently, genomic information. Dr. Arbeev authored and co-authored more than 150 peer-reviewed publications in these areas.


Svetlana Ukraintseva

Research Professor in the Social Science Research Institute

Dr. Ukraintseva studies causes of human aging and related decline in resilience, to identify genetic and other factors responsible for the increase in mortality risk with age eventually limiting longevity. She explores complex relationships, including trade-offs, between physiological aging-changes and risks of major diseases (with emphasis on Alzheimer’s and cancer), as well as survival, to find new genetic and other targets for anti-aging interventions and disease prevention. She also investigates possibilities of repurposing of existing vaccines and treatments for AD prevention and interventions into the aging. For this, Dr. Ukraintseva and her team use data from several large human studies containing rich genetic and phenotypic information (including longitudinal measurements) on thousands of individuals. Dr. Ukraintseva is a PI and Key Investigator on several NIH funded grants, and has more than 130 peer-reviewed publications, including in major journals such as Nature Reviews, Stroke, European Journal of Human Genetics, and some other.


Anatoli I. Yashin

Research Professor in the Social Science Research Institute

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.