RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism.

Abstract

The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/-) are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/-) mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pgen.0020177

Publication Info

Aslanukov, Azamat, Reshma Bhowmick, Mallikarjuna Guruju, John Oswald, Dorit Raz, Ronald A Bush, Paul A Sieving, Xinrong Lu, et al. (2006). RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism. PLoS Genet, 2(10). p. e177. 10.1371/journal.pgen.0020177 Retrieved from https://hdl.handle.net/10161/15575.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ferreira

Paulo Alexandre Ferreira

Associate Professor in Ophthalmology

The long-term goal of our research program is twofold. The first is to understand the interplay between intracellular signaling, intracellular trafficking and proteostasis in health and disease; the second is to uncover molecular players and mechanisms partaking in such processes that are amenable to therapeutic intervention in a variety of disease states. Presently, our research efforts are centered on dissecting the roles of two disease-associated protein interactomes assembled by the Ran-binding protein 2 (RanBP2) and the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) in several neuronal cell types of the retina and brain that often undergo neurodegeneration upon a multiplicity of diseases with distinct etiologies.

The RanBP2 is a large and modular 358 kDa protein scaffold, which assembles a large multifunctional complex and acts a signal integrator of molecular and subcellular signaling and trafficking pathways critical to neuronal survival or function. Mutations or deficits in RanBP2 are linked to a variety of diseases processes ranging from neurodegeneration and necrosis to stress signaling and cancer. RanBP2 modulates the assembly or disassembly of several protein complexes with apparent disparate functions and implicated in molecular processes, such as nucleocytoplasmic and microtubule-based intracellular trafficking of proteins or organelles, protein homeostasis and biogenesis, modulation of protein-protein interactions (e.g. sumoylation), and control of cell division. Interdisciplinary approaches ranging from single molecule analysis to cell-based assays and genetically modified mouse models are employed to dissect selective cell type-dependent roles of proteins modulated dynamically by RanBP2 and underlying mechanisms in healthy and disease states.

The RPGRIP1 is also a modular protein, which associates directly with molecular partners, such as the retinitis pigmentosa GTPase regulator (RPGR) and nephrocystin-4 (NPHP4). Human mutations in the genes encoding RPGRIP1, RPGR and NPHP4 lead to severe ocular-renal, syndromic and non-syndromic retinal or renal diseases. These lead ultimately to blindness, loss of kidney function or both. Emerging data from our laboratory implicate the RPGRIP1 interactome in the regulation of the tethering, targeting, exiting and/or transport of selective retinal-renal and pre-ciliary components from the endoplasmic reticulum compartment to cilia. These processes serve as molecular determinants to the formation of subcellular structures/compartments that are critical to photoreceptor or tubular kidney cell functions . Current work is directed at dissecting: i) the biological and pathological roles of components of the RPGRIP1 interactome in retinal and kidney functions; ii) the molecular, cellular and pathophysiological bases of allelic-specific mutations and genetic heterogeneity affecting components of the RPGRIP1 interactome; iii) the identification of therapeutic targets and mechanisms dependent on the functions of the RPGRIP1 assembly complex and therapeutic approaches to delay the onset or progression of degeneration of photoreceptor, tubular kidney cells or both.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.