Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism.

Thumbnail
View / Download
3.0 Mb
Date
2013-01
Authors
Allensworth, Jennifer L
Sauer, Scott J
Lyerly, H Kim
Morse, Michael A
Devi, Gayathri R
Repository Usage Stats
178
views
490
downloads
Abstract
X-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K (d) > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.
Type
Journal article
Subject
Amino Acid Chloromethyl Ketones
Apoptosis
Caspase 8
Cell Line, Tumor
Dipeptides
Dose-Response Relationship, Drug
Gene Knockdown Techniques
Humans
Indoles
Inflammatory Breast Neoplasms
Inhibitor of Apoptosis Proteins
Intracellular Signaling Peptides and Proteins
Mitochondrial Proteins
Quinolines
Receptors, Tumor Necrosis Factor, Type I
TNF-Related Apoptosis-Inducing Ligand
Tumor Necrosis Factor-alpha
X-Linked Inhibitor of Apoptosis Protein
Permalink
https://hdl.handle.net/10161/12454
Published Version (Please cite this version)
10.1007/s10549-012-2352-6
Publication Info
Allensworth, Jennifer L; Sauer, Scott J; Lyerly, H Kim; Morse, Michael A; & Devi, Gayathri R (2013). Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism. Breast Cancer Res Treat, 137(2). pp. 359-371. 10.1007/s10549-012-2352-6. Retrieved from https://hdl.handle.net/10161/12454.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Morse

Michael Aaron Morse

Professor of Medicine
We are studying the use of immune therapies to treat various cancers, including gastrointestinal, breast, and lung cancers and melanoma. These therapies include vaccines based on dendritic cells developed in our laboratory as well as vaccines based on peptides, viral vectors, and DNA plasmids. Our group is also a national leader in the development and use of laboratory assays for demonstrating immunologic responses to cancer vaccines. Finally, we are developing immunotherapies based on ado
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Related items

Showing items related by title, author, creator, and subject.

  • Thumbnail

    The cytolytic molecules Fas ligand and TRAIL are required for murine thymic graft-versus-host disease. 

    Na, Il-Kang; Lu, Sydney X; Yim, Nury L; Goldberg, Gabrielle L; Tsai, Jennifer; Rao, Uttam; Smith, Odette M; ... (22 authors) (J Clin Invest, 2010-01)
    Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions ...
  • Thumbnail

    Hepatocyte growth factor enhances death receptor-induced apoptosis by up-regulating DR5. 

    Li, Yang; Fan, Xing; Goodwin, C Rory; Laterra, John; Xia, Shuli (BMC Cancer, 2008-11-07)
    BACKGROUND: Hepatocyte growth factor (HGF) and its receptor c-MET are commonly expressed in malignant gliomas and embryonic neuroectodermal tumors including medulloblastoma and appear to play an important role in the growth ...
  • Thumbnail

    Epidermal growth factor regulates hematopoietic regeneration after radiation injury. 

    Doan, Phuong L; Himburg, Heather A; Helms, Katherine; Russell, J Lauren; Fixsen, Emma; Quarmyne, Mamle; Harris, Jeffrey R; ... (12 authors) (Nat Med, 2013-03)
    The mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. We identified epidermal growth factor (EGF) to be highly enriched in the bone marrow serum of ...

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University