Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet.

Thumbnail
View / Download
1.0 Mb
Date
2019-06
Authors
Plouviez, Sophie
LaBella, Abigail Leavitt
Weisrock, David W
von Meijenfeldt, FA Bastiaan
Ball, Bernard
Neigel, Joseph E
Van Dover, Cindy L
Repository Usage Stats
55
views
17
downloads
Abstract
In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep-sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep-sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back-arc basins, currently of great interest for deep-sea mineral extraction. A total of 42 loci were sequenced from each individual using high-throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.
Type
Journal article
Subject
conservation genetics
deep‐sea
invertebrates
phylogeography
population genetics
Permalink
https://hdl.handle.net/10161/19257
Published Version (Please cite this version)
10.1002/ece3.5235
Publication Info
Plouviez, Sophie; LaBella, Abigail Leavitt; Weisrock, David W; von Meijenfeldt, FA Bastiaan; Ball, Bernard; Neigel, Joseph E; & Van Dover, Cindy L (2019). Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecology and evolution, 9(11). pp. 6568-6580. 10.1002/ece3.5235. Retrieved from https://hdl.handle.net/10161/19257.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Van Dover

Cindy Van Dover

Harvey W. Smith Distinguished Professor of Biological Oceanography in the Nicholas School of the Environment and Earth Sciences
Dr. Cindy Lee Van Dover is a deep-sea biologist with an interest in ocean exploration and the ecology of chemosynthetic ecosystems. She began her work in this field in 1982, joining the first biological expedition to hydrothermal vents on the East Pacific Rise. After earning a Master's degree in ecology from UCLA in 1985, she continued her graduate education in the MIT/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography. There she joined numerous expeditions and publ
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University