A new non-enzymatic method for isolating human intervertebral disc cells preserves the phenotype of nucleus pulposus cells.
Date
2014-12
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Cells isolated from intervertebral disc (IVD) tissues of human surgical samples are one of potential sources for the IVD cellular therapy. The purpose of this study was to develop a new non-enzymatic method, "tissue incubation", for isolating human IVD cells. The IVD tissues of annulus fibrosus (AF) and nucleus pulposus (NP) were incubated separately in tissue culture flasks with culture medium. After 7-10 days incubation, cells were able to migrate out of IVD tissues and proliferate in vitro. After 3-4 weeks culture, expanded cells were harvested by trypsinization, and the remaining tissues were transferred to a new flask for another round of incubation. The molecular phenotype of IVD cells from juvenile and adult human samples was evaluated by both flow cytometry analysis and immunocytochemical staining for the expression of protein markers of NP cells (CD24, CD54, CD239, integrin α6 and laminin α5). Flow cytometry confirmed that both AF and NP cells of all ages positively expressed CD54 and integrin α6, with higher expression levels in NP cells than in AF cells for the juvenile group sample. However, CD24 expression was only found in juvenile NP cells, and not in AF or older disc cells. Similar expression patterns for NP markers were also confirmed by immunocytochemistry. In summary, this new non-enzymatic tissue incubation method for cell isolation preserves molecular phenotypic markers of NP cells and may provide a valuable cell source for the study of NP regeneration strategies.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Tang, Xinyan, William J Richardson, Robert D Fitch, Christopher R Brown, Robert E Isaacs and Jun Chen (2014). A new non-enzymatic method for isolating human intervertebral disc cells preserves the phenotype of nucleus pulposus cells. Cytotechnology, 66(6). pp. 979–986. 10.1007/s10616-013-9650-7 Retrieved from https://hdl.handle.net/10161/31392.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Robert Douglas Fitch
My research interest center around limb lengthening and external fixation. Much is known about the biology of distraction osteogenesis. However, little is known about the effects on the soft tissues with limb lengthening techniques. In a dog model, we are investigating the effects of limb lengthening on muscle function, analizing amount of muscle lengthened per segment of bone lengthening, contractility, and strength. We also hope to begin studies assessing the effects of non steroidal anti-inflammatories on the quality of bone regenerate formed with distraction osteogenesis.

Christopher Robert Brown
As an orthopaedic specialist and spine surgeon, I am committed to providing the best possible outcome for my patients with the least invasive surgery possible. I treat patients using the latest minimally invasive surgical techniques. Among the conditions I see in my patients are cervical radiculopathy and myelopathy, and traumatic spine injuries. Among the procedures I perform are complex cervical reconstruction, disc replacement surgery, minimally invasive scoliosis surgery, motion preservation spine surgery, and metastatic and tumor surgery.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.