Coherence potentials: loss-less, all-or-none network events in the cortex.

Loading...
Thumbnail Image

Date

2010-01-12

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

298
views
458
downloads

Citation Stats

Abstract

Transient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular associations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pbio.1000278

Publication Info

Thiagarajan, Tara C, Mikhail A Lebedev, Miguel A Nicolelis and Dietmar Plenz (2010). Coherence potentials: loss-less, all-or-none network events in the cortex. PLoS Biol, 8(1). p. e1000278. 10.1371/journal.pbio.1000278 Retrieved from https://hdl.handle.net/10161/4441.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Nicolelis

Miguel Angelo L. Nicolelis

Professor Emeritus of Neurobiology

Miguel Nicolelis, M.D., Ph.D., is the Duke School of Medicine Distinguished Professor of Neuroscience, Duke University Professor of Neurobiology, Biomedical Engineering and Psychology and Neuroscience, and founder of Duke's Center for Neuroengineering. He is the founder and Scientific Director of the Edmond and Lily Safra International Institute for Neuroscience of Natal.  Dr. Nicolelis is also founder of the Walk Again Project, an international consortium of scientists and engineers, dedicated to the development of an exoskeleton device to assist severely paralyzed patients in regaining full body mobility.

Dr. Nicolelis has dedicated his career to investigate how the brains of freely behaving animals encode sensory and motor information. As a result of his studies, Dr. Nicolelis was first to propose and demonstrate that animals and human subjects can utilize their electrical brain activity to directly control neuroprosthetic devices via brain-machine interfaces (BMI).

Over the past 25 years, Dr. Nicolelis pioneered and perfected the development of a new neurophysiological method, known today as chronic, multi-site, multi-electrode recordings. Using this approach in a variety of animal species, as well as in intra-operative procedures in human patients, Dr. Nicolelis launched a new field of investigation, which aims at measuring the concurrent activity and interactions of large populations of single neurons throughout the brain. Through his work, Dr. Nicolelis has discovered a series of key physiological principles that govern the operation of mammalian brain circuits.

Dr. Nicolelis pioneering BMI studies have become extremely influential since they offer new potential therapies for patients suffering from severe levels of paralysis, Parkinson’s disease, and epilepsy. Today, numerous neuroscience laboratories in the US, Europe, Asia, and Latin America have incorporated Dr. Nicolelis' experimental paradigm to study a variety of mammalian neuronal systems. His research has influenced basic and applied research in computer science, robotics, and biomedical engineering. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.