Genotypic analysis of B cell colonies by in situ hybridization. Stoichiometric expression of three VH families in adult C57BL/6 and BALB/c mice.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title


The filter paper disc method for cloning inducible lymphocytes was used to census the splenic B cell population of C57BL/6 and BALB/c mice for the expression of three VH gene-families, VH X-24, -Q52, and -J558. B cell colonies, arising from single founder lymphocytes, were identified by in situ hybridization with VH family- and C mu-specific cDNA probes. Some 6.7 X 10(4) C mu+ colonies were screened. Among C57BL/6- or BALB/c-derived colonies, approximately 3% were VH X-24+, approximately 19% were VH Q52+, and approximately 54% were VH J558+. These frequencies are consistent with a process of equiprobable expression for individual VH segments, and provide direct evidence that normal splenic B lymphocytes use a process of random genetic combinatorics to generate the antibody repertoire.


Journal article







Garnett H. Kelsoe

James B. Duke Distinguished Professor of Immunology
  1. Lymphocyte development and antigen-driven diversification of immunoglobulin and T cell antigen receptor genes.
    2. The germinal center reaction and mechanisms for clonal selection and self - tolerance. The origins of autoimmunity.
    3. Interaction of innate- and adaptive immunity and the role of inflammation in lymphoid organogenesis.
    4. The role of secondary V(D)J gene rearrangment in lymphocyte development and malignancies.
    5. Mathematical modeling of immune responses, DNA motifs, collaborations in bioinformatics.
    6. Humoral immunity to influenza and HIV-1.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.