Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease.

Abstract

Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1165/rcmb.2017-0095oc

Publication Info

Walker, Julia KL, Barbara S Theriot, Michael Ghio, Carol S Trempus, Jordan E Wong, Victoria L McQuade, Jiurong Liang, Dianhua Jiang, et al. (2017). Targeted HAS2 Expression Lessens Airway Responsiveness in Chronic Murine Allergic Airway Disease. American journal of respiratory cell and molecular biology, 57(6). pp. 702–710. 10.1165/rcmb.2017-0095oc Retrieved from https://hdl.handle.net/10161/25432.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Walker

Julia K.L. Walker

Helene Fuld Health Trust Distinguished Professor of Nursing

Broadly, my research focuses on the role for G protein-coupled receptors in the pathophysiology of asthma. Asthma is a complex disease characterized by airway inflammation, hyperresponsiveness and remodeling. G protein-coupled receptors figure largely in the pathology and treatment of this disease. For example, beta-agonists, the rescue medication inhaled by asthmatics, act at airway smooth muscle beta2-adrenergic receptors (β2-AR) to relax the airways. However, excessive use of beta-agonists has been associated with clinical worsening of asthma control and increased mortality. β2-ARs can signal through two well characterized and independent signaling pathways; a G protein-dependent pathway and a beta-arrestin-dependent pathway. Previously we showed that mice lacking beta-arrestin-2 do not develop the symptoms of allergic airway inflammatory disease and that T cell and eosinophil migration to the lung is impaired in these mice. Similarly, others have shown that the asthma phenotype is significantly reduced in mice lacking global expression of β2-ARs. Thus, we hypothesize that the beta-arrestin-dependent signaling arm, downstream of the β2-AR, is responsible for promoting the asthma phenotype. The translational relevance of this work is high given that the determination of the signaling pathway that is utilized by β2-ARs can be influenced by the molecular signature of the agonist. Thus, our work could lead to the discovery of a β2-AR ligand that bronchodilates the airways without promoting asthma symptoms. In addition to transducing β2-AR-mediated signaling to promote asthma, we hypothesize that beta-arrestin-2 also mediates chemokine receptor signaling and thus, the inflammatory component of asthma. Chemokines, released in response to allergens, dictate the migration of immune cells to the lung in asthma and chemokine receptors are known to signal via both the G-dependent and beta-arrestin-dependent pathways.

Ingram

Jennifer Leigh Ingram

Associate Professor in Medicine

Dr. Ingram's research interests focus on the study of airway remodeling in human asthma. Proliferation, migration, and invasion of airway fibroblasts are key features of airway remodeling that contribute to diminished lung function over time. Dr. Ingram uses molecular biology approaches to define the effects of interleukin-13 (IL-13), a cytokine abundantly produced in the asthmatic airway, in the human airway fibroblast. She has identified important regulatory functions of several proteins prevalent in asthma that control fibroblast growth and pro-fibrotic growth factor production in response to IL-13. By understanding these pathways and their role in human asthma and the chronic effects of airway remodeling, novel treatment strategies may be developed.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.